Tag: Z-Wave

Fachowy Elektryk 03’2017 – “Jak połączyć instalację fotowoltaiczną z inteligentnym budynkiem?”

Fachowy Elektryk 03’2017 – “Jak połączyć instalację fotowoltaiczną z inteligentnym budynkiem?”

Termin „inteligentny budynek” coraz częściej przewija się w kontekście nowoczesnych rozwiązań, które służą uzyskaniu wymiernych oszczędności w kosztach eksploatacji. Dlatego instalacja fotowoltaiczna, która jest źródłem czystej i taniej energii, powinna z systemem automatyki budynkowej być zintegrowana i odgrywać w nim ważną rolę. Poniższy artykuł opisuje, jak połączyć ze sobą te dwa światy.

Fachowy Elektryk 02’2017 – “Inteligentniejsze instalacje fotowoltaiczne”

Fachowy Elektryk 02’2017 – “Inteligentniejsze instalacje fotowoltaiczne”

Coraz częściej inwestorzy, którzy decydują się na instalację fotowoltaiczną zastanawiają się nad optymalnym wykorzystaniem produkowanej energii. Dotyczy to zarówno małych, przydomowych mikroinstalacji, gdzie impulsem może być system tzw. opustów w niedawno wprowadzonej ustawie o OZE, ale również instalacji w rozwiązaniach przemysłowych, dla których nadal nie zaproponowano żadnego systemu wsparcia.

Jak połączyć falownik Fronius z Fibaro Home Center 2

Jak połączyć falownik Fronius z Fibaro Home Center 2

Poniższy artykuł przedstawia szczegółowy opis metody połączenia elektrowni fotowoltaicznej bazującej na falownikach Fronius oraz instalacji inteligentnego domu bazującej na centrali Fibaro Home Center 2. Zamieszczono również przykładowy kod skryptu w języku Lua.
Aby zrozumieć korzyści płynących z tego połączenia należy uprzednio zapoznać się z wpisem wyjaśniającym podstawy fotowoltaiki: “Podstawy fotowoltaiki w pigułce”
 

Zobaczyć znaczy zrozumieć

Wszystkie falowniki Fronius nowej generacji SnapINverter (rodziny Fronius SYMO, PRIMO, GALVO, ECO) standardowo wyposażane są w nowoczesną kartę Datamanager 2.0. Karta ta umożliwia proste w obsłudze i wizualnie atrakcyjne monitorowanie działania instalacji fotowoltaicznej na portalu Solar.Web (http://www.solarweb.com) należącym do firmy Fronius. Użytkownik uzyskuje wgląd we wszystkie najważniejsze parametry instalacji, przede wszystkim w aktualnie oddawaną przez falownik moc oraz wykresy prezentujące ilości wyprodukowanej energii. Obserwując wyłącznie pracę falownika lub falowników nie wiemy jednak, co się dalej z tą energią dzieje. Łącząc te dane z systemem inteligentnego domu, otwierają się zupełnie nowe, znacznie bardziej interesujące możliwości: właściciel instalacji PV może obserwować bilans energii w budynku (zarówno produkcję i zużycie energii), a w kolejnym kroku – także nadzorować wykorzystanie energii produkowanej.

Optymalizacja zużycia produkowanej energii na własne potrzeby

Oddawanie do sieci niewykorzystanej energii wiąże się z wymiernymi stratami finansowymi. W przypadku mikronstalacji, dzięki wprowadzonemu net-meteringowi możemy „odzyskać” tylko 80% (do mocy 10kW) lub 70% (do mocy 40kW) oddanej energii wraz z kosztem jej dystrybucji. A stopień samowystarczalności (opisany powyżej) to zaledwie 25-30%.

Wprowadzając inteligentne włączanie niektórych urządzeń w godzinach największej produkcji energii ze słońca, możemy uzyskać poprawę takiego stanu, a stopień samowystarczalności podnieść nawet do 50%. Dlatego współpraca pomiędzy firmą Fibar Group a firmą Fronius przynosi zupełnie nowe rozwiązania w dziedzinie optymalizacji zużycia produkowanej energii na potrzeby własne.

H:\TechSupport\Solar\07 partners\Fibaro\rys_01b.png

Rys. 1. Idea zarządzana zużyciem energii w budynku jednorodzinnym w celu zwiększenia stopnia wykorzystania produkowanej energii.

Coraz ważniejszym tematem staje się wytwarzanie ciepła, także pod względem możliwości jego włączenia w zarządzanie energią. W nowoczesnych zbiornikach ciepłej wody użytkowej w zasadzie nie jest istotny moment pozyskania energii wykorzystanej do podgrzewania wody – potrafią one utrzymywać uzyskaną temperaturę przez kilkadziesiąt godzin. Podobnie w przypadku energooszczędnych, dobrze izolowanych budynków, załączenie pompy ciepła do ogrzewania lub chłodzenia pomieszczeń może być przesunięte w czasie. Urządzenia te idealnie zatem nadają się do sterowania, a co za tym idzie – inteligentnego magazynowania wytwarzanej energii w postaci ciepła (lub chłodu).

Zastosowanie Fibaro

Odpowiednio zaprogramowane urządzenia wykonawcze w systemie Fibaro pozwalają na załączanie i wyłączanie dowolnych odbiorników energii (np. poprzez przekaźnik FGS-2×1 lub FGS-2×3, a w przypadku większych mocy w instalacji trójfazowej – dodatkowy stycznik). Najprostszy algorytm może wykorzystywać w tym celu wartość aktualnie wytwarzanej w instalacji PV mocy. Poprzez odpowiednio ustawione wartości załączenia i wyłączenia następuje sterowanie podłączonym odbiornikiem.

System Fibaro może dawać jednak znacznie więcej możliwości. Mając dokładną wiedzę o aktualnym bilansie energii elektrycznej w budynku, można z łatwością zaprogramować załączenie urządzeń na bazie wartości mocy oddawanej do sieci oraz ich wyłączenie – w przypadku gdy energia z sieci jest pobierana.

Ale możliwości kontroli i regulacji jest więcej. W przypadku pomp ciepła bardzo ważne jest, aby kompresor po załączeniu pracował przez określony, minimalny czas. Taki parametr możliwy jest do ustawienia w przypadku wykorzystania skryptów LUA, a nawet zwykłych scen.

Można również, jako priorytet wybrać przygotowanie c.w.u. nie później, niż do określonej godziny, np. 18:00, gdy domownicy wracają po pracy. Fibaro będzie sterował grzałką c.w.u. w zależności od dostępnego nadmiaru produkowanej energii, a jeśli będzie on w pochmurne dni niewystarczający – załączy podgrzewanie wody z odpowiednim czasowym wyprzedzeniem.

Monitorowanie pracy instalacji PV i podejmowanie różnorodnych akcji na bazie np. aktualnie uzyskiwanej mocy, czy tez możliwość sterowania pracą instalacji PV daje projektantom instalacji inteligentnego budynku nieograniczone pole możliwości.

Połączenie Fibaro i Fronius – zagadnienia techniczne

Fronius Datamanager 2.0

Standardowo każdy falownik nowej generacji SnapINverter (Fronius SYMO, GALVO, ECO i PRIMO) wyposażany jest w zaawansowaną kartę Datamanager 2.0. Oprócz podstawowej funkcji, jaką jest przesyłanie danych na portal Solar.Web (http://www.solarweb.com) karta ta posiada wiele interfejsów, które mogą z łatwością zostać wykorzystane do integracji instalacji fotowoltaicznej z systemem inteligentnego budynku. Są to m.in.:

  • interfejs JSON
  • Modbus RTU (via RS-485) oraz Modbus TCP (via Ethernet)
  • Push FTP / HTTP POST

Szczególnie ten pierwszy interfejs wydaje się być idealny do połączenia z systemem Fibaro. Prosty skrypt w języku LUA umożliwi odczyt bieżącej wartości mocy czy też ilości wyprodukowanej energii. Te dwie liczby na początkowym etapie w zupełności wystarczą do zaspokojenia podstawowych potrzeb użytkowników takich połączonych instalacji:

  • wizualizacji
  • sterowania odbiornikami energii

Fibaro HC2 / HCL

Najwygodniejszą formą połączenia interfejsu Fronius z Fibaro byłoby wykorzystanie mechanizmu plug-inów, który daje łatwość instalacji i kompatybilność z HC2 oraz HCL.

Niestety, w obecnej wersji Fibaro nie jest możliwe tworzenie własnych plug-inów, ani pobieranie danych ze „zwykłych” plug-inów, które mogłyby służyć do sterowania, np. do wyzwalania scen opartych o bloki. Wyjątkiem jest plug-in pogodowy (YR i/lub Yahoo Weather), który zarówno zintegrowany jest z pulpitem, jak i stanowi osobną sekcję wśród wyzwalaczy.

Rozwiązaniem alternatywnym mogą być urządzenia wirtualne (VD), w których może zostać umieszczony odpowiedni skrypt w języku LUA. Takie rozwiązanie niestety wyklucza możliwość użycia centrali Home Center Lite (HCL), ale jest akceptowalne, ze względu na duży stopień wykorzystania Home Center 2 (HC2) w instalacjach.

Inteligentne liczniki Z-Wave

Docelowo w instalacji inteligentnego domu należy przewidzieć zastosowanie licznika energii Z-wave, który zainstalowany na styku budynku i OSD (np. szeregowo z licznikiem OSD) dokonywałby pomiarów zużycia energii we wszystkich fazach dla całego budynku. Aktualnie istnieją takie rozwiązania, np. licznik Aeon Labs HEM Gen 5. Licznik ten w wersji 3-fazowej posiada 3 przekładniki prądowe do założenia na przewodach w celu pomiaru prądu oraz 4 przewody do pomiaru napięć. Dokładność pomiaru jest wystarczająca na potrzeby wizualizacji i/lub sterowania. Licznik ten umożliwia pomiar dwukierunkowy, tzn. zarówno energii pobieranej z sieci (ze znakiem „+”), jak i energii oddawanej do sieci (ze znakiem „–”)

Więcej na temat licznika: http://aeotec.com/z-wave-home-energy-measure

W systemie Fibaro nie ma aktualnie możliwości ustawienia poziomów / priorytetów w urządzeniach mierzących zużycie energii elektrycznej. To znaczy, że pomiar dokonany przez WallPlug zostanie dodany do pomiaru dokonanego przez licznik energii pobieranej przez cały budynek.

Dodatkowym problemem jest prezentacja/wizualizacja ujemnych wartości energii, symbolizujących nadwyżkę produkowanej energii oddawanej do sieci. Taka opcja nie jest na chwilę zaimplementowana w systemie Fibaro.

Inteligentne liczniki Fronius Smart Meter

Alternatywnie, dane dotyczące oddawanej i pobieranej energii do/z sieci elektroenergetycznej OSD mogą być pobierane (również w skrypcie LUA) z licznika inteligentnego Fronius Smart Meter poprzez interfejs JSON Datamanagera. Ograniczone możliwości wizualizacji w panelu energii Fibaro mogą być zastąpione przez zaawansowany interfejs graficzny portalu Solar.Web, pozwalający na zaawansowaną analizę produkcji oraz zużycia energii, w tym bilans energetyczny.

KONCEPCJA POŁĄCZENIA

Możliwość integracji pomiędzy automatyką budynkową Fibaro, a instalacją PV bazującą na falownikach Fronius jest niezwykle łatwa do uzyskania.

Od strony falownika można tego dokonać poprzez protokół JSON (ang. Java Script Object Notation), standardowo dostępny w urządzeniu Fronius Datamanager 2.0. Firma Fronius udostępnia obszernie udokumentowane API (link do pliku), które daje możliwość odczytania praktycznie wszystkich kluczowych danych instalacji PV, począwszy od parametrów pracy falowników (w tym najważniejszych: aktualnej mocy i oddanej energii), ale również danych ze stacji pogodowej, przepływów energii przez inteligentny licznik Fronius Smart Meter, czy też magazynu energii Fronius Solar Battery.

Przykładowe kody umożliwiające odczyt danych dotyczących całego systemu, poszczególnych urządzeń oraz przepływów energii w układzie.

http://<IPAddress:TCPPort>/solar_api/GetAPIVersion.cgi
http://<IPAddress:TCPPort>/solar_api/v1/GetActiveDeviceInfo.cgi?DeviceClass=System
http://<IPAddress:TCPPort>/solar_api/v1/GetInverterRealtimeData.cgi?Scope=System
http://<IPAddress:TCPPort>/solar_api/v1/GetInverterRealtimeData.cgi?Scope=Device&DeviceId=1&DataCollection=CommonInverterData
http://<IPAddress:TCPPort>/solar_api/v1/GetPowerFlowRealtimeData.fcgi

Gdzie: <IPAddress:TCPPort> to adres IP (zaleca się nadawanie adresu statycznego!) oraz port (standardowo: 80) karty Datamanager 2.0 w sieci wewnętrznej.

Jako przykład została wybrana funkcja „GetPowerFlowRealtimeData”, która w jednym zapytaniu umożliwia odczyt najważniejszych danych dla całego systemu:

http://<IPAddress:TCPPort>/solar_api/v1/GetPowerFlowRealtimeData.fcgi

Przykład danych uzyskanych powyższym zapytaniem zamieszczono w tabeli 2 poniżej:

String JS Eval
{
"Head" : {
"RequestArguments" : {},
"Status" : {
"Code" : 0,
"Reason" : "",
"UserMessage" : ""
},
"Timestamp" : "2017-03-12T08:53:31+01:00"
},
"Body" : {
"Data" : {
"Site" : {
"Mode" : "produce-only",
"P_Grid" : null,
"P_Load" : null,
"P_Akku" : null,
"P_PV" : 14174,
"E_Day" : 27021.800476,
"E_Year" : 27062257.75,
"E_Total" : 289067759.125
},
"Inverters" : {
"1" : {
"DT" : 121,
"P" : 1032
},

 

Graficzna reprezentacja powyższych danych może wyglądać następująco:

H:\TechSupport\Solar\07 partners\Fibaro\rys_03d.png

Rys. 2. Graficzna reprezentacja danych z zapytania JSON

W Fibaro Home Center 2 należy stworzyć tzw. urządzanie wirtualne (ang. Virtual Device, VD) z krótkim kodem w języku skryptów „Lua”.

Podstawą skryptu jest funkcja json.decode(), która w formie zagnieżdżonych tablic asocjacyjnych daje dostęp do wszystkich przekazanych wartości:

fronius =
{ { „Head”, <tablica_Head> },
{ „Body”, <tablica_Body> } }

Przykładowo, wartość mocy wytwarzanej w instalacji PV („P_PV”):

fronius Body Data Site P_PV

może zostać odczytana w skrypcie w następujący sposób:

P_PV = fronius[“Body”].Data.Site.P_PV

lub

P_PV = fronius.Body.Data.Site.P_PV

Do poprawnego działania skryptu konieczne jest zdefiniowanie w VD następujących etykiet („Label”):

load
pv
grid
eday

Zaznaczenie „Label” jako „Main” spowoduje wyświetlanie wartości w oknie głównym.

Natomiast, aby używać danych w scenach, należy je zapisać do uprzednio zdefiniowanych zmiennych globalnych w panelu „Variables”. Przykładowo:

-- set the global variables
fibaro:setGlobal ('PV_plant_load', P_Load)
fibaro:setGlobal ('PV_plant_grid', P_Grid)
fibaro:setGlobal ('PV_plant_pv', P_PV)
fibaro:setGlobal ('PV_plant_eday', E_Day)

Przykładowy kod skryptu do Virtual Device

Do pobrania po akceptacji regulaminu. Wyłącznie dla zarejestrowanych użytkowników!

Podsumowanie

Kod napisany jest w taki sposób, aby adres IP Datamanagera w sieci lokalnej oraz port (standardowo 80) był podawany w panelu kontrolnym Virtual Device. W przypadku zaimportowania VD do centrali HC2 są to jedyne dane, które powinny zostać skonfigurowane (poza definicją zmiennych globalnych), co ułatwia proces instalacji.

H:\TechSupport\Solar\07 partners\Fibaro\PV_plant_VD_General — krótki.png

Rys. 3. Panel konfiguracyjny Virtual Device z polami na adres IP oraz port, pod którym dostępny jest Datamanager 2.0

Niestety, w chwili obecnej wykorzystanie podstawowej funkcjonalności i stworzenie odpowiednich powiązań wymaga od firmy instalacyjnej umiejętności pisania kodu w języku „Lua”, dla instalatorów systemów automatyki domowej nie powinna być to jednak przeszkoda.

Niemniej jednak, wykorzystanie bardziej zaawansowanych funkcji, takich jak umieszczenie źródła energii w „Energy Panel” będzie wymagało stworzenia dedykowanego plug-inu.

Przykład wizualizacji urządzenia wirtualnego zbierającego dane z elektrowni fotowoltaicznej przedstawiono na rysunkach od 4 do 6:

H:\TechSupport\Solar\07 partners\Fibaro\proof-of-concept_HC2_v1.png

Rys. 4. Przykład wizualizacji danych pobieranych z elektrowni PV

H:\TechSupport\Solar\07 partners\Fibaro\proof-of-concept_HC2_v3.png

Rys. 5. Dane dostępne w urządzeniu wirtualnym (VD)

H:\TechSupport\Solar\07 partners\Fibaro\PV_plant_VD_Variables.png

Rys. 6. Dane pochodzące z elektrowni dostępne jako zmienne globalne

Powiązanie danych pochodzących z instalacji PV (poprzez zmienne globalne) ze sterowaniem najprostszym urządzeniem jakim jest Fibaro Wall Plug daje nam nieograniczone możliwości zaprogramowania „scen”: alarmy, progi zadziałania, zależności czasowe, monitorowanie, zaawansowana analiza produkcji i zużycia energii oraz bazujące na tych informacjach inteligentne sterowanie odbiornikami energii. Nic nie stoi na przeszkodzie, aby odpowiednio sterować również bardziej zaawansowane urządzenia, choćby ściemniacze (ang. dimmer) czy kontrolery LED RGBW, których w sieci Z-Wave może być nawet 232.

ZAŁĄCZNIKI





Ulotka Fronius i Fibaro

Ulotka Fronius i Fibaro

Nareszcie proste rozwiązanie automatyki domowej! FIBARO Home Center 2 kontroluje wszystko w Twoim domu,
od rolet do ogrzewania. Połączenie Home Center 2 z systemem fotowoltaicznym z falownikami Fronius zapewnia
wygodny sposób zarządzania energią w celu zwiększenia poziomu zużycia na potrzeby własne. Rezultatem jest większa
autonomia w dostarczaniu energii – po prostu podłącz falownik Fronius do Home Center 2 a cały świat aplikacji
otworzy się przed Tobą.

Ulotka Fibaro i Fronius

Ulotka Fibaro i Fronius

Połącz instalację fotowoltaiczną z systemem inteligentnego domu FIBARO i zyskaj jeszcze więcej możliwości!
Zmieniając profil zużycia poprzez inteligentne włączanie niektórych urządzeń w godzinach największej produkcji energii ze słońca, możesz podnieść stopień wykorzystania produkowanej energii na potrzeby własne nawet do 50%.

Przykładowy kod LUA integrujący Fibaro i Fronius

Przykładowy kod LUA integrujący Fibaro i Fronius

Skrypt umożliwia pobieranie z falownika Fronius bieżących danych, takich jak moc instalacji PV lub ilość wyprodukowanej energii. Informacje te mogą być łatwo wykorzystane do tworzenia scen i inteligentnego zarządzania produkowaną energią.

Fibaro i Fronius – instrukcja integracji

Fibaro i Fronius – instrukcja integracji

Niniejszy dokument ma na celu wyjaśnienie korzyści wynikających ze współpracy urządzeń firm Fibar Group (Home Center 2) oraz falowników firmy Fronius (Symo, Primo, Galvo, itp.) 

Prezentacja – “Przykłady integracji PV z automatyką budynkową”

Prezentacja – “Przykłady integracji PV z automatyką budynkową”

Prezentacja wprowadza w zagadnienia związane z zarządzaniem energią: od najbardziej podstawowego sterowania bezpośrednio z falownika aż po zaawansowaną integrację z systemami automatyki budynkowej (Z-Wave, KNX) takich firm jak FIBARO, ComfortClick czy Loxone.

Porównanie technologii i standardów w automatyce budynkowej

Porównanie technologii i standardów w automatyce budynkowej

Od pewnego już czasu chodziło nam po głowie przygotowanie pewnego rodzaju podsumowania technologii i standardów stosowanych w fizycznej warstwie komunikacji automatyki budynkowej. Jeśli instalacja powstaje wraz z budowanym domem – wówczas sprawa jest prosta: kładziemy dodatkowe przewody. Jest to rozwiązanie najbardziej odporne na wszelkiego rodzaju zakłócenia, zapewnia również zasilanie podłączonym do magistrali aktorom i sensorom. Tak jest przynajmniej w przypadku EIB/KNX i kilku podobnych rozwiązań.
Sprawy się nieco komplikują, gdy mamy do czynienia już z gotowym domem / mieszkaniem, do którego chcielibyśmy dodać “inteligencję”. Prucie ścian z reguły nie wchodzi w grę, pozostaje albo nienajszczęśliwszy KNX-PL (dane przesyłane kablami energetycznymi) lub transmisja bezprzewodowa.
Opisywaliśmy już trochę standardy transmisji bezprzewodowej, choćby Z-wave w tym poście. Brakowało nam jednak rzetelnego porównania wszystkich technicznych aspektów tych technologii.

   

I takie właśnie porównanie postanowiliśmy zrobić samodzielnie (choć trochę bazujemy na zagranicznych serwisach). Zestawienie nie ma na celu faworyzowania żadnego z rozwiązań i jest na tyle obiektywne, na ile tylko daliśmy radę 🙂

Wyjaśnijmy kilka pojęć

Zanim jednak przejdziemy do meritum, kilka słów wstępu i wyjaśnienie pewnych pojęć używanych w zestawieniu.

Otwarte standardy
Dokonaliśmy tu pewnego uproszczenia, jako że nawet w tzw. ustandaryzowanych technologiach nie zawsze jest możliwe znalezienie niezależnych dostawców dla różnych komponentów danego rozwiązania.
I tak przykładowo:

  • Z-Wave ma tylko jednego dostawcę układów radiowych nadawczo-odbiorczych.
  • To samo odnosi się do EnOcean.
  • Istnieje tylko jeden program do instalacji i konfigurowania EIB/KNX – Engineering Tool Suite (ETS).

A zatem tylko wtedy, gdy istnieje co najmniej jeden dostawca alternatywny dla każdego ze składników systemu / rozwiązania, orzeczenie “system otwarty” jest naprawdę uzasadnione.
Na potrzeby tego podsumowania dopuścimy się jednak pewnego uproszczenia i nie będziemy aż tak restrykcyjni.

Medium transmisji
Jednym z najbardziej krytycznych i ważnych cech technologii sieciowych jest medium służące do transmitowania sygnału. Systemy radiowe używają … powietrza, układy typu “powerline” (PL) – istniejących linii energetycznych.
Oprócz tych dwóch, istnieją systemy wymagające dodatkowego, specjalnego okablowania. Doskonałym przykładem jest EIB/KNX-TP, który jako medium używa “skrętki” (TP = Twisted Pair). Okablowanie takie musi być jednak wcześniej zaplanowane i ułożone razem z instalacją elektryczną. To wada w stosunku do systemów bezprzewodowych (radiowych), ale zaletą jest bezsprzeczna pewność transmisji.

A właśnie, niezawodność transmisji
Najbardziej niezawodnym sposobem przesyłania sygnałów są specjalne przewody danych zainstalowane i służące wyłącznie do tego celu.
Przykładami takich rozwiązań są KNX-TP i Ethernet (naszym zdaniem przyszłość automatyki budynkowej). Ewentualne zakłócenia mogą wystąpić tylko wtedy, gdy więcej niż jedno urządzenie próbuje nadawać i dochodzi do kolizji pakietów na magistrali. Wadami są wysokie koszty i niemały wysiłek, aby zaplanować i zainstalować przewody wszędzie tam, gdzie mogą okazać się potrzebne.
Znacznie bardziej narażone na zakłócenia jest przesyłanie danych za pośrednictwem istniejących linii elektroenergetycznych. Zasilacze komputerowe, sprzęt AGD itp. emitują taką ilość sygnałów zakłócających, że przesyłanie danych liniami energetycznymi stanowi nie lada akrobację. Ponadto projekt instalacji zasilającej z reguły nie jest zbyt odpowiedni do transmisji danych. Należy zagwarantować, aby dane docierały do wszystkich urządzeń końcowych, a jeśli urządzenie jest na jednej linii/fazie L1, a inne jest na linii/fazie L2, to te dwa urządzenia nie mogą “słyszeć” się nawzajem. Wówczas należy zainstalować sprzęgło międzyfazowe.
Transmitowanie danych w powietrzu na ogół jest bardziej złożone i bardziej podatne na zakłócenia, niż transmisja przewodowa . Atak “Denial of Service” jest możliwy z nadajnikiem zagłuszania, niemniej taki atak może być łatwo rozpoznany i np. aktywowany alarm sabotażu. Generalnie sieci typu mesh (węzłowe / kratowe) są bardziej niezawodne, niż zwykłe sieci typu punkt-punkt.
Przy transmisji 868 MHz dostępne jest tylko wąskie pasmo, zatem systemy działają tylko na jednym kanale. Z kolei w paśmie 2,4 GHz możemy spodziewać się interferencji z siecią WiFi.
Aby dobrze poczuć różnice pomiędzy technologią przewodową i bezprzewodową, można odwołać się do porównania pomiędzy telefonią komórkową a telefonią stacjonarną czy też pomiędzy Ethernetem a WiFi. Wszystkie technologie mają swoje plusy dodatnie i plusy ujemne, większość oferuje transmisyjne bezproblemowo, a skutki chwilowych zakłóceń eliminowane są przez sumy kontrolne, korekcje błędów i powtarzanie transmisji.

Prędkość transmisji
Parametr ten określa prędkość transmisji danych (komendy, aktualizacje statusu, wartości pomiarowe, monitorowanie, itp.) od jednego urządzenia (np. bramy) do drugiego (np. ściemniacz).
Są to wartości brutto. Szybkość przepływu danych netto oznacza faktyczną ilość przesłanych danych użytkownika i zależy od dodatkowych czynników, np. danych sterujących zawartych w protokole transmisji: adresy, sumy kontrolne, potwierdzanie otrzymanie wiadomości, żądanie dostępu, itp.

Sieci węzłowe (ang. mesh networks)

Jest to najwyższa forma ewolucji wśród wszystkich bezprzewodowych sieci. Jej strukturę można porównać z Internetem. Każdy pojedynczy komponent w zasięgu fal radiowych jest podłączony do wszystkich urządzeń sąsiednich i jednocześnie działa jako router przesyłając pakiety danych do końcowego odbiorcy. Zakłócenia radiowe i martwe punkty stały się przeszłością, jako że im więcej zainstalowanych komponentów, tym bardziej alternatywne drogi są ​​dostępne. W zależności od aplikacji możliwe są różne procesów routingu, np.
AODV ang. „adhoc on-demand distance vector routing”. Ten proces routowania umożliwia spontaniczne wyznaczenia trasy między dwoma aktywnymi urządzeniami sieciowymi w celu wymiany pakietów danych w dowolnym czasie. Uczestnicy (urządzenia) nie wymagają znajomości topologii sieci.
mTOR, ang. „many-to-one routing”. Idealnie nadaje się do sieci z jedną lub większą ilością stacji centralnych, takich jak home gateway służących do aktualizacji statusu, zbierania i prezentowania danych pomiarowych.
SR, ang. „source routing”. W tym przypadku stacja nadawcza zna całą trasę do miejsca przeznaczenia. Dobry wybór, jeśli gateway chce komunikować się z poszczególnymi urządzeniami, ale znajomość topologii sieci jest tutaj wymogiem.

Potwierdzenia
Potwierdzenia to możliwość zapewnienia rzetelnej wymiany pakietów danych. Jeden składnik wysyła wiadomość do drugiego i oczekuje zwrotnego komunikatu potwierdzenia jej otrzymania. Jeśli potwierdzenie nie zostanie odebrane, oryginalna wiadomość zostanie powtórzona przez stację nadawczą.
L2. Potwierdzenia w warstwie połączenia (warstwa 2, L2) zapewnia poprawność transmisji między dwoma sąsiednimi stacjami. Jeśli pakiet nie zostanie odebrany zostanie powtórzony – bez wysiłku i prawie bez żadnych opóźnień.
L7. Potwierdzenia w warstwie aplikacji (warstwa 7, L7) są niezbędne dla bezbłędnej transmisji. Dotyczą one sytuacji, które wykraczają poza warstwę połączenia. Powtórzenie transmisji w warstwie aplikacji wymaga więcej czasu i zasobów niż w warstwie 2, ponieważ wyszukiwarka routingu musi być zainicjowana.

Szyfrowanie
Właściwe szyfrowanie danych zapewnia, że ​​atakujący nie może rozszyfrować wiadomości, którą przechwycił z medium transmisyjnego. Jeszcze bardziej istotne jest to, że napastnik nie może przemycać własnych wiadomości w celu wywołania akcji takich jak wyłączenie systemu alarmowego, wyłączenie świateł zewnętrznych itp.
Zaawansowany standard szyfrowania (AES) ze 128-bitową długością klucza oferuje bardzo wysoki poziom bezpieczeństwa – spełniając nawet wysokie standardy rządowe podczas transmisji tajnych dokumentów państwowych. AES jest również bazą dla protokołu (WPA2), który skutecznie zabezpiecza sieci bezprzewodowe WiFi.

Bezpieczeństwo
Absolutne bezpieczeństwo można osiągnąć tylko w systemach z prawidłowo wdrożonym szyfrowaniem.
Systemy sterowania radiowego bez szyfrowania pozwalają potencjalnemu napastnikowi potajemnie nagrywać transmisję danych i później przejąć kontrolę nad elementami zarządzania budynkiem. Intruz musi tylko być gdzieś w pobliżu, w zasięgu fal radiowych.
Systemy przewodowe bez szyfrowania oferują większe bezpieczeństwo, ale tylko tak długo, jak długo napastnik nie ma fizycznego połączenia z okablowaniem. Jeśli na oświetlenie zewnętrzne jest podłączone przez KNX-TP, należy to traktować jako słaby punkt instalacji i punkt wejścia dla potencjalnego napastnika. Również problematyczne są publicznie dostępne budynki, np. hotele. Tutaj atakujący może usunąć element KNX i uzyskać nieograniczony dostęp do okablowania magistrali (choć dobrze zaprojektowany system umożliwia wywołanie alarmu w takiej sytuacji usunięcia urządzenia KNX).
Jeśli jest zainstalowany KNX-PL, dostęp do gniazda zasilania daje możliwość manipulowania sygnałami magistrali jako że okablowanie zasilania służy również jako medium transmisji danych

Podstawowe technologie w automatyce budynkowej – porównanie

ZigBee Z-Wave enOcean KNX-RF KNX-PL KNX-TP
Otwarty standard tak tak tak tak tak tak
Medium transmisji powietrze powietrze powietrze powietrze linia energ. skrętka
Niezawodność wysoka średnia niska niska wysoka bardzo wysoka
Zasilanie bateryjne bateryjne zasilanie własne 3) ? sieć energet. 24-30V DC
Pobór prądu w trybie
uśpienia / pracy
1uA / * 2,5uA / * 0,08uA / * ? ? – / 10mA
Zakres częstotliwości
(radio)
2,4 GHz,
868 MHz1)
868/908 MHz 868/315 MHz 868 MHz
Najkrótszy telegram 4ms 20ms 0,6ms ? ? ?
Prędkość transmisji 250 kbps 9.6/40 kbps 125 kbps 16.4 kbps 1.2 kbps 9.6 kbps
Zasięg 30 – 100m 300m 300m
Sieć węzłowa (mesh) tak (AODV,
mTOR, SR)
tak (SR) nie nie
Potwierdzenia L2 & L7 L2?/L7 no (L7) L2 & L7 L2 & L7
Szyfrowanie AES-128 brak2) brak brak brak brak
Bezpieczeństwo bardzo duże brak brak brak małe średnie



1) ZigBee dostępny jest w wersji 868 MHz; niektórzy producenci oferują pasmo 2,4 GHz
2) Tylko elektroniczne zamki (system dostępu) Z-wave jest szyfrowany AES-128
3) Ciekawostką systemu enOcean jest wykorzystywanie niekonwencjonalnych sposobów zasilania.
Np. sensor przycisku jest zasilany … energią naciśnięcia klawisza. 

Zamiast podsumowania

W powyższym porównaniu oceniono tylko możliwości techniczne dla każdego medium transmisji danych. Aplikacje i integracja z automatyką budynkową stanowi osobne zagadnienie i jako takie powinno doczekać się indywidualnego opracowania. Może Czytelnicy mają jakieś ciekawe materiały na ten temat?

Opracowanie na podstawie materiałów firm: EnOcean, Ubisys, KNX