Tag: Datamanager

Poprawne połączenie przewodów w magistrali RS-485 (Modbus RTU)

Poprawne połączenie przewodów w magistrali RS-485 (Modbus RTU)

Modbus RTU króluje wśród standardów komunikacji przemysłowej od prawie 50 lat. Największą zaletą jest zgodność tysięcy różnego rodzaju urządzeń i sterowników, które dzięki Modbus RTU mogą między sobą wymieniać różne dane. Również firma Fronius oferuje ten interfejs na karcie Datamanager 2.0, znajdującej się na podstawowym wyposażeniu większości falowników.  Dzięki temu możliwe jest podłączenie do falownika inteligentnego, dwukierunkowego licznika energii Fronius Smart Meter, ale również podłączenie falownika do różnego rodzaju systemów BMS lub SCADA. Między innymi dlatego na infolinii Wsparcia Technicznego często pojawia się pytanie, jak poprawnie wykonać połączenie magistrali RS-485, która właśnie wykorzystywana jest jako medium w komunikacji Modbus RTU.

Modbus RTU & TCP oraz Datamanager 2.0

Na początek kilka definicji oraz wyjaśnienie, jakie standardy są dostępne w przypadku produktów Fronius i do czego mogą zostać wykorzystane:

Karta Fronius Datamanager 2.0:

  • – zawiera Modbus RTU oraz Modbus TCP
  • – może działać jako Modbus RTU Master lub jako RTU Slave
  • – może działać jako Modbus TCP Client lub jako TCP Server

Modbus RTU jest wykorzystywany w Datamanager 2.0 do podłączenia:

  • – liczników energii Fronius Smart Meter
  • – akumulatorów (Fronius Solar Battery, LG Chem RESU H)
  • – sterownika obciążenia Fronius Ohmpilot
  • – urządzeń innych firm

Modbus TCP jest wykorzystywany w Datamanager 2.0 do

  • – podłączenia urządzeń firm trzecich
  • – sterowania Fronius Ohmpilot

Podstawy Modbus RTU & RS-485

Poniżej wyjaśnienie podstawowych zasad tworzenia magistrali RS-485 w formie kilku prostych punktów:

  • – RS-485 to standard definiujący interfejs połączenia elektrycznego (nie protokół!). Magistrala RS-485 stosowana jest w protokole “Modbus RTU” na urządzeniu Datamanager 2.0.
  • – Fizyczny nośnik jest zbalansowanym/zrównoważonym kablem połączeniowym, zwanym “skrętką“. Dwie linie (A i B) MUSZĄ wykorzystywać JEDNĄ skręconą parę!
  • – Sygnał elektryczny jest zbalansowany (różnicowa transmisja sygnału). Jest to komunikacja odpowiednia dla otoczenia, w którym występują zakłócenia.
  • – Topologia magistrali jest liniową topologią punkt-punkt, która może być rozszerzona na wiele punktów

Uwaga: połączenie w “gwiazdę” lub “równoległe” jest nieprawidłowe! –> prowadzi do nadmiernie wysokich odbić lub niskiej impedancji

  • – Magistrala RS-485 może być zrealizowana jako system “2-przewodowy” lub “4-przewodowy” (Datamanager 2.0 oferuje tylko opcję 2-przewodową).
  • – Magistrala RS-485 musi mieć tylko dwa końce i muszą być zakończone terminatorami (rezystory 120 Ω), aby uniknąć odbić i obniżyć impedancję (zmniejsza to wrażliwość na zakłócenia).
  • – Obie linie danych powinny być wyrównane do potencjałów +5V i GND, aby uniknąć „pływającego” potencjału. Zapewnia to bezpieczną pracę i zmniejsza wrażliwość na zakłócenia, gdy żaden węzeł nie zasila linii lub magistrala jest uszkodzona / zwarta.

Połączenia sygnałów są zwykle oznaczone jako:

D + (A) (+) sygnał nieodwrócony
D – (B) (-) sygnał odwrócony
(C) (wspólne GND)
  • – Nie ma zalecenia, jak podłączyć ekran przewodów RS-485
  • – Tylko urządzenie RTU Master może zainicjować komunikację na magistrali

 

Architektura magistrali RS-485 – Schemat

  • – Rezystory polaryzacji (pull-up i pull-down) nie są montowane w urządzeniu DataManager w celu zapewnienia elastyczności
  • – Dwie linie danych MUSZĄ być jedną skręconą parą!
  • – Zaleca się, aby długość magistrali od terminatora do terminatora nie przekraczała 300m, choć przy niższych parametrach transmisji może ona być znacznie dłuższa (nawet do 1200m). Oczywiście pod warunkiem, że fizyczne połączenie zostało wykonane zgodnie ze wszystkimi przedstawionymi w tym artykule zaleceniami.

Architektura magistrali RS-485

Uziemiony ekran jest tutaj przykładem dla pojedynczego punktu połączenia PE, ale nie dajemy zaleceń dotyczących ekranowania, z  jednym wyjątkiem: NIGDY nie podłączaj ekranu do sygnału-GND!

Przełącznik Master / Slave na Datamanager nie odpowiada funkcji Modbus RTU!

RS-485 – wewnątrz przewodów

Czasami instalatorzy popełniają taki błąd To jest jedyny poprawny sposób połączenia
© janitza.de © janitza.de

Uziemienie sygnału (C) jest obowiązkowe, jeżeli interfejs nie jest izolowany galwanicznie.

Podsumowanie

Zawsze potrójnie sprawdź, czy okablowanie RS-485 jest naprawdę w doskonałym stanie, zanim zmarnujesz swój czas!

Podłączenie i konfigurowanie licznika energii z kartą Datamanager 2.0

Podłączenie i konfigurowanie licznika energii z kartą Datamanager 2.0

Produkcja energii elektrycznej w instalacji fotowoltaicznej jest dobrze znana (odczytywana bezpośrednio z falownika). Można ją rówież przedstawić w formie atrakcyjnych wykresów na portalu Solar.web. Jeżeli natomiast zainstalujemy dodatkowe liczniki energii,  pozwolą nam one na stworzenie profilu zużycia energii w budynku. Można zatem ustalić, co się dzieje z produkowaną energią: które odbiorniki z niej korzystają bezpośrednio, a ile energii oddajemy do sieci. Dzięki profilom zużycia można “wyłapać” np. nieprawidłowo działające odbiorniki (zamrażarka w piwnicy z zepsutym termostatem – z życia wzięte!). W instalacjach z falownikiem Fronius można zainstalować nawet 4 dodatkowe liczniki energii: 1 podstawowy (w torze zasilania) oraz trzy dodatkowe, które mogą mierzyć energię wybranych odbiorów (np. pompy ciepła) lub innych źródeł energii (np. falownik wiatraka).

UWAGA! W jednej instalacji można wykorzystać różne typy liczników, np.:

  • Fronius Smart Meter 50kA-3 jako licznik główny,
  • Fronius Smart Meter 63A-1 do monitorowania jednofazowej pompy ciepła
  • licznik S0 do monitorowania zużycia energii przez grzałkę w zbiorniku c.w.u.
  • Fronius Smart Meter 63-3 do monitorowania drugiego źródła energii (np. wiatraka) 

Poniżej wyjaśniamy, jak skonfigurować podłączenie licznika Fronius Smart Meter oraz licznika S0 na stronie www karty Datamanagera. Informacje te zostały zaczerpnięte z instrukcji obsługi karty Datamanagera, która może zostać pobrana ze strony Fronius Polska.

Informacje ogólne

WAŻNE! Ustawienia w pozycji menu „Liczniki” może konfigurować wyłącznie przeszkolony personel specjalistyczny!
W pozycji menu „Liczniki” konieczne jest podanie hasła serwisowego (login: service).

Menu “Licznik”

 

Rys.1. Ustawienia licznika w menu karty Datamanager

(1) Pole wyboru licznika:

– brak wybranego licznika;

– Fronius Smart Meter;

– falownik S0 (tylko w przypadku modeli Fronius Galvo, Fronius Symo i Fronius Primo).

(2) Odnośnik do schematu połączeń liczników

(3) Przycisk „Zastosuj/zapisz”

(4) Przycisk „Anuluj / odrzuć wprowadzone dane”


Fronius Smart Meter

Rejestracja zużycia własnego przez urządzenie „Fronius Smart Meter”.

Rys.2. Wybór licznika Fronius Smart Meter w menu karty Datamanager

(1a) Lokalizacja licznika w punkcie zasilania sieci (na styku budynku i OSD)

Nastąpi pomiar mocy i energii dostarczonej do sieci. Na podstawie tych wartości oraz danych instalacji określane jest zużycie.

(1b) Lokalizacja licznika w punkcie poboru energii (w torze odbiorników)

Nastąpi bezpośredni pomiar zużytej mocy i energii. Na podstawie tych wartości oraz danych instalacji określana jest moc i energia przekazana.

Rys.3. Możliwe lokalizacje instalacji licznika Fronius Smart Meter

Można używać urządzeń „Fronius Smart Meter” w wersji trój- lub jednofazowej. W obu przypadkach wyboru dokonuje się w pozycji „Fronius Smart Meter”. Urządzenie „Fronius Datamanager” automatycznie określa typ licznika.


Rys. 4. Podłączenie urządzenia „Fronius Smart Meter” do urządzenia „Fronius Datamanager 2.0”


Licznik S0

Rys. 5. ustawienia licznika S0 podłączego do Falownika nr 1 (“Falownik S0 1“)

(1a) Lokalizacja licznika w punkcie zasilania sieci (na styku budynku i OSD)

Nastąpi pomiar mocy i energii dostarczonej do sieci. Na podstawie tych wartości oraz danych instalacji określane jest zużycie.

Licznik S0 musi być skonfigurowany w tym miejscu tak, aby zliczał energię przekazaną do sieci.

WAŻNE! W przypadku licznika S0 w punkcie zasilania dane licznika nie będą wyświetlane w platformie „Fronius Solar.web”. Opcja ta jest przewidziana do zastosowania tylko dla dynamicznej redukcji mocy. W przypadku zasilania sieci wartości zużycia można określać tylko w ograniczonym stopniu.

(1b) Lokalizacja licznika w punkcie poboru energii (w torze odbiorników) – ZALECANA

Nastąpi bezpośredni pomiar zużytej mocy i energii. Na podstawie tych wartości oraz danych instalacji będzie określana moc i energia przekazana.

Licznik S0 musi być skonfigurowany w tym miejscu tak, aby zliczał energię zużytą.

(1c) Pole wprowadzania przelicznika impulsów na kWh

Rys. 6. Możliwe lokalizacje instalacji  licznika S0

Do falownika przez S0 można bezpośrednio podłączyć licznik w celu rejestracji wartości zużycia własnego (dotyczy tylko falowników Fronius Galvo, Fronius Symo, Fronius Primo i Fronius Eco).

WAŻNE! Licznik S0 jest podłączany do wejściowego interfejsu falownika. Podłączenie licznika S0 do falownika może wymagać aktualizacji oprogramowania sprzętowego.

Rys. 7. Lokalizacja kostki wejścia S0 w falowniku oraz schemat połączeń licznika

Wymagania dotyczące interfejsu licznika S0:

  • musi spełniać normę PN-EN 62053-31 Class B,
  • maks. napięcie 15 V DC,
  • maks. prąd w stanie włączonym 15 mA,
  • min. prąd w stanie włączonym 2 mA,
  • maks. prąd w stanie wyłączonym 0,15 mA.

Zalecana maks. liczba impulsów licznika S0:

Moc fotowoltaiczna kWp [kW] maks. liczba impulsów na kWp
30 1000
20 2000
10 5000
≤ 5,5 10 000

 

UWAGA: “Wejście S0”, wbrew swojej nazwie, jest tak naprawdę małym źródłem prądowym. Dzięki temu falownik może wykryć na tym styku, czy jest ono zwarte, czy też rozwarte, a dzięki temu: potrafi wykrywać i liczyć impulsy. Źródło to ma polaryzację, czyli “+” i “-“.
Natomiast nowe liczniki z interfesjem S0 mają wyjście impulsowe w formie transoptora (dzięki temu można zachować izolację galwaniczną), a dokładniej złącza Kolektor-Emiter w opto-tranzystorze. Złącze to może przewodzić prąd tylko w jednym kierunku. Dlatego należy zwrócić uwagę na polaryzację przewodów! W praktyce: jeżeli licznik S0 nie zostanie wykryty przez Datamanager, należy zamienić bieguny przewodów.
Schemat połączeń przedstawiono poniżej.

 

Jak połączyć się z falownikiem Fronius przez Modbus?

Jak połączyć się z falownikiem Fronius przez Modbus?

Możliwość komunikacji z naszą instalacją fotowoltaiczną: z falownikami, z licznikiem inteligentnym lub z zestawem baterii otwiera zupełnie nowe możliwości. jeśli chodzi o monitorowanie i sterowanie w czasie rzeczywistym. Jednym z najbardziej powszechnych protokołów jest standard Modbus, który można wykorzystać zarówno przy połączeniu fizycznym skrętką RS-485 (Modbus RTU) lub poprzez łącza komputerowe LAN/WiFi (Modbus TCP).

Wszystkie falowniki Fronius, które mają na wyposażeniu kartę Datamanager 2.0, lub są do tej karty podłączone przez DATCOM (RS-422) mogą być zarówno monitorowane, jak i sterowane, używając standardowego zestawu rejestrów wyspecyfikowanego przez organizację SunSpec Alliance.

 

Co będzie nam potrzebne

Nasze pierwsze próby rozpoczniemy w standardzie Modbus TCP, ponieważ nie wymaga to żadnych inwestycji sprzętowych. Komunikacja via Modbus RTU działa identycznie, wymaga jednak albo dedykowanego sterownika (np. firmy WAGO) lub konwertera sygnałów np. z USB do standardu RS-485.

Do testów będzie nam potrzebne:

  1. dowolny falownik Fronius wyposażony w kartę Datamanager 2.0 (także Datamanager 1.0, jeśli pozostaniemy przy Modbus TCP)
  2. lokalna sieć komputerowa z routerem
  3. komputer z przeglądarką
  4. dokumentacja interfejsu Modbus pobrana z oficjalnej strony Fronius, pod tym linkiem.
  5. oprogramowanie do testowania urządzeń Modbus RTU/TCP np. Radzio! Modbus Master Simulator (o tym, gdzie można pobrać to oprogramowanie pisaliśmy w artykule “10 narzędzi przydatnych instalatorom PV“) 

 

Krok 1 – konfiguracja Datamanagera

Zakładamy, że karta Datamanager’a jest poprawnie skonfigurowana i podłączona do lokalnej sieci komputerowe: przewodowo poprzez Ethernet lub bezprzewodowo: przez WiFi. Jak poprawnie wykonać tę czynność można dowiedzieć się z naszego Webinarium #01.

Podpowiedź: zaleca się, aby adres IP Datamanager’a był ustawiony “na sztywno”, czyli jako statyczny. W przeciwnym wypadku, tj. przy ustawieniu dynamicznym DHCP, po restarcie routera (np. w wyniku awarii zasilania), może mu zostać nadany zupełnie nowy adres IP. 

Przyjmijmy, że nasza lokalna sieć komputerowa wygląda następująco:

  • router pod adresem IP: 192.168.1.1
  • Datamanager pod statycznym adresem IP: 192.168.1.3
  • nasz komputer znajdujący się w tej samej podsieci, np. pod adresem IP: 192.168.1.26

Taka przykładowa konfiguracja została pokazana na rysunku poniżej:

W przeglądarce internetowej na komputerze w sieci lokalnej otwieramy stronę Datamanagera (jego Webserver), pod adresem: http://192.168.1.3, przechodzimy do menu Ustawienia (1) i wybieramy zakładkę MODBUS (2):

W zakładce MODBUS, ustawiamy (3) następujące pola:

“wysyłanie danych przed Modbus” zaznaczamy “tcp”
Port Modbus domyślną wartością jest “502” – najlepiej zostawić
String Control Adress-Offest dotyczy urządzeń Fronius String Control; zostawiamy jak jest
Sunspec Model Type w zależności od wyboru typu: “float” lub “int + SF” zmienią się adresy rejestrów.
Więcej szczegółów w oficjalnej dokumentacji. Wybieramy “int + SF”
Tryb Demo przydatny przy sprawdzaniu poprawności połączeń między Datamanagerem,
a urządzeniem odpytującym dane. W trybie “demo” zawsze odczytamy jakieś
dane…
Sterowanie falownikiem przez Modbus Jeżeli chcemy nie tylko odczytywać dane, ale również zapisywać do 
odpowiednich rejestrów – czyli sterować np. mocą falownika
Ogranicz sterowanie Ze względów bezpieczeństwa możemy ograniczyć możliwość sterowania
do urządzeń z konkretnymi adresami IP. Przykładowo, wpisując 192.18.1.26
(czyli numer komputera w naszym przykładzie) wyłączymy możliwość sterowania
z innych komputerów.

WAŻNE! Na koniec koniecznie należy zatwierdzić wszystkie zmiany przyciskiem √ (4)

 

Krok 2 – konfiguracja falownika / falowników

Do karty Datamanager mamy podłączone 2 falowniki, np. Fronius Galvo 1.5-1 oraz Fronius Symo 3.0-3-M. Należy sprawdzić, jaki jest numer każdego falownika w menu: Ustawienia --> DATCOM --> numer falownika. Przyjmijmy, że dla Galvo jest to wartość 01 (domyślna), a dla Symo: 02. Aby sieć DATCOM działała poprawnie, numery te muszą być różne!

Podpowiedź: do karty Datamanager’a może być podłączonych nawet 100 dowolnych falowników Fronius, 10 kart Fronius Sensor Card, urządzenia takie jak String Control, itp. Każde z tych urządzeń może być odczytywane / sterowane poprzez Modbus RTU/TCP, pod warunkiem, że znamy jego numer. Najczęściej do karty Datamanagera będziemy mieli podłączony tylko 1 falownik, ale nawet w tym szczególnym wypadku bardzo ważna jest znajomość jego numeru. 

 

Krok 3 – uruchamiamy program monitorowania Modbus

Po pobraniu i uruchomieniu oprogramowania Radzio! Modbus Master Simulator musimy przejść przez dwa ekrany ustawień:

Krok 3.A – Ustawienia komunikacji

W menu programu Radzio! wybieramy Connection --> Settings i dokonujemy następujących ustawień:

Protocol Modbus TCP
Modbus TCP –> IP address: wstawiamy adres IP karty Datamanager’a, w naszym przypadku 192.168.1.3
Modbus TCP –> TCP port: wstawiamy numer portu, który wybraliśmy w ustawieniach karty Datamanager’a
w naszym przypadku: 502 (domyślny)
General –> Timeout (ms) zaleca się, aby na początek ustawić tę wartość na minimum 3000 ms.
Jeśli komunikacja będzie działać poprawnie można ją (metodą prób i błędów) zmniejszać.
Uwaga: wartość ta silnie zależy od ilości falowników na magistrali DATCOM.

Następnie w menu Connection klikamy w Connect, co powinno ustanowić połączenie z naszą kartą Datamanager’a.

WAŻNE! W przypadku problemów z ustawieniem komunikacji, należy upewnić się, że na naszym lokalnym komputerze *nie* są blokowane porty przez oprogramowanie Firewall!

Krok 3.B – Ustawienia rejestrów

Spróbujmy na początek odczytać jakiś prosty rejestr, np. typ falownika. Zgodnie z dokumentacją firmy Fronius, adresy rejestrów wg specyfikacji SunSpec Alliance wyglądają następująco:

Przykładowo, pod adresem 40005 można odczytać nazwę producenta (np. “Fronius”), a pod adresem 40021: typ falownika. Spróbujmy:

 

Device Settings –> Device ID Tu podajemy numer falownika na magistrali DATCOM. Jeżeli chcemy odczytać dane z falownika Galvo,
podajemy nr 1 (domyślny numer falownika). Kolejne falowniki na magistrali możemy odczytać podając
ich numery, czyli dla naszego przykładu falownik Symo będzie miał numer 2 
Device Settings –> [________] mamy takie opcje jak: “Coil status”, “Input status”, “Holding registers” oraz “Input registers”.
Wybieramy: “Holding registers“.
Device Settings –> Address podajemy numer rejestru, który chcemy odczytać, pomniejszony o 1 (wyjaśnienie poniżej),
czyli: 40020 (typ falownika)
Device Settings –> Length ilość rejestrów, które chcemy jednorazowo odczytać, np.: 10 
ASCII Display –> Enable jeśli chcemy odczytać zawartość rejestrów tekstowych, dla ułatwienia można zażyczyć sobie
równolegle wyświetlenia w formacie tekstu ASCII
ASCII Display –> 2 char/reg sw przy tym zaznaczeniu tekst jest najbardziej czytelny 🙂

WAŻNE: Zawsze należy podać poprawny identyfikator urządzenia (Device ID), nawet jeśli urządzenie Fronius Datamanager jest podłączone tylko do jednego falownika!

Z ważnych informacji:

  • Adresy rejestrów nie są stałe.
  • Rzeczywiste adresy rejestrów zależą od składu dynamicznej listy rejestru SunSpec.

Prawidłowa procedura powinna zatem wyglądać następująco:

  • Wyszukaj model, wysyłając żądanie (ustal adres początkowy)
  • Następnie pracuj z offsetami

Aby odczytać rejestr, adres startowy rejestru musi zostać określony w żądaniu Modbus.

Podstawowy rejestr Fronius: 212
Podstawowy rejestr SunSpec: 40001

Rejestry zaczynają się od 1 i nie reprezentują kodu funkcji.

Nie należy mylić rejestrów ze schematem adresów Modicon: w schemacie adresu Modicon, 40001 jest wyświetlane jako 4×40001. Aby odczytać rejestr 40001, należy użyć adresu: 40000 (0x9C40).

UWAGA! Dlatego adres rejestru, który jest wprowadzany w programie, ma zawsze numer o 1 mniejszy niż rzeczywisty numer rejestru.
Stąd odczytując rejestr 40021 wpisaliśmy do programu Radzio!: 40020.

Gotowe! Na ekranie programu Radzio! możemy odczytać od góry do dołu: “Galvo 1.5-1” oraz wartość “00” oznaczającą koniec tekstu. 

 

Co dalej?

Po bardziej zaawansowane funkcje, konfigurację Modbus RTU, adresy rejestrów, różnice między “float” a “Int + SF” odsyłamy na oficjalną stronę Fronius pod następującym linkiem: http://www.fronius.com/pl-pl/poland/energia-sloneczna/produkty-i-rozwizania/wszystkie-produkty/monitorowanie-instalacji/otwarte-z%C5%82%C4%85cza/modbus-tcp, gdzie dostępna jest do pobrania pełna dokumentacja, m.in.: “Instrukcja obsługi Fronius Datamanager – Modbus TCP & RTU DE, EN

Zachęcamy do własnych prób. Powodzenia!

Fachowy Elektryk 03’2017 – “Jak połączyć instalację fotowoltaiczną z inteligentnym budynkiem?”

Fachowy Elektryk 03’2017 – “Jak połączyć instalację fotowoltaiczną z inteligentnym budynkiem?”

Termin „inteligentny budynek” coraz częściej przewija się w kontekście nowoczesnych rozwiązań, które służą uzyskaniu wymiernych oszczędności w kosztach eksploatacji. Dlatego instalacja fotowoltaiczna, która jest źródłem czystej i taniej energii, powinna z systemem automatyki budynkowej być zintegrowana i odgrywać w nim ważną rolę. Poniższy artykuł opisuje, jak połączyć ze sobą te dwa światy.

Fachowy Elektryk 02’2017 – “Inteligentniejsze instalacje fotowoltaiczne”

Fachowy Elektryk 02’2017 – “Inteligentniejsze instalacje fotowoltaiczne”

Coraz częściej inwestorzy, którzy decydują się na instalację fotowoltaiczną zastanawiają się nad optymalnym wykorzystaniem produkowanej energii. Dotyczy to zarówno małych, przydomowych mikroinstalacji, gdzie impulsem może być system tzw. opustów w niedawno wprowadzonej ustawie o OZE, ale również instalacji w rozwiązaniach przemysłowych, dla których nadal nie zaproponowano żadnego systemu wsparcia.

Jak połączyć falownik Fronius z Fibaro Home Center 2

Jak połączyć falownik Fronius z Fibaro Home Center 2

Poniższy artykuł przedstawia szczegółowy opis metody połączenia elektrowni fotowoltaicznej bazującej na falownikach Fronius oraz instalacji inteligentnego domu bazującej na centrali Fibaro Home Center 2. Zamieszczono również przykładowy kod skryptu w języku Lua.
Aby zrozumieć korzyści płynących z tego połączenia należy uprzednio zapoznać się z wpisem wyjaśniającym podstawy fotowoltaiki: “Podstawy fotowoltaiki w pigułce”
 

Zobaczyć znaczy zrozumieć

Wszystkie falowniki Fronius nowej generacji SnapINverter (rodziny Fronius SYMO, PRIMO, GALVO, ECO) standardowo wyposażane są w nowoczesną kartę Datamanager 2.0. Karta ta umożliwia proste w obsłudze i wizualnie atrakcyjne monitorowanie działania instalacji fotowoltaicznej na portalu Solar.Web (http://www.solarweb.com) należącym do firmy Fronius. Użytkownik uzyskuje wgląd we wszystkie najważniejsze parametry instalacji, przede wszystkim w aktualnie oddawaną przez falownik moc oraz wykresy prezentujące ilości wyprodukowanej energii. Obserwując wyłącznie pracę falownika lub falowników nie wiemy jednak, co się dalej z tą energią dzieje. Łącząc te dane z systemem inteligentnego domu, otwierają się zupełnie nowe, znacznie bardziej interesujące możliwości: właściciel instalacji PV może obserwować bilans energii w budynku (zarówno produkcję i zużycie energii), a w kolejnym kroku – także nadzorować wykorzystanie energii produkowanej.

Optymalizacja zużycia produkowanej energii na własne potrzeby

Oddawanie do sieci niewykorzystanej energii wiąże się z wymiernymi stratami finansowymi. W przypadku mikronstalacji, dzięki wprowadzonemu net-meteringowi możemy „odzyskać” tylko 80% (do mocy 10kW) lub 70% (do mocy 40kW) oddanej energii wraz z kosztem jej dystrybucji. A stopień samowystarczalności (opisany powyżej) to zaledwie 25-30%.

Wprowadzając inteligentne włączanie niektórych urządzeń w godzinach największej produkcji energii ze słońca, możemy uzyskać poprawę takiego stanu, a stopień samowystarczalności podnieść nawet do 50%. Dlatego współpraca pomiędzy firmą Fibar Group a firmą Fronius przynosi zupełnie nowe rozwiązania w dziedzinie optymalizacji zużycia produkowanej energii na potrzeby własne.

H:\TechSupport\Solar\07 partners\Fibaro\rys_01b.png

Rys. 1. Idea zarządzana zużyciem energii w budynku jednorodzinnym w celu zwiększenia stopnia wykorzystania produkowanej energii.

Coraz ważniejszym tematem staje się wytwarzanie ciepła, także pod względem możliwości jego włączenia w zarządzanie energią. W nowoczesnych zbiornikach ciepłej wody użytkowej w zasadzie nie jest istotny moment pozyskania energii wykorzystanej do podgrzewania wody – potrafią one utrzymywać uzyskaną temperaturę przez kilkadziesiąt godzin. Podobnie w przypadku energooszczędnych, dobrze izolowanych budynków, załączenie pompy ciepła do ogrzewania lub chłodzenia pomieszczeń może być przesunięte w czasie. Urządzenia te idealnie zatem nadają się do sterowania, a co za tym idzie – inteligentnego magazynowania wytwarzanej energii w postaci ciepła (lub chłodu).

Zastosowanie Fibaro

Odpowiednio zaprogramowane urządzenia wykonawcze w systemie Fibaro pozwalają na załączanie i wyłączanie dowolnych odbiorników energii (np. poprzez przekaźnik FGS-2×1 lub FGS-2×3, a w przypadku większych mocy w instalacji trójfazowej – dodatkowy stycznik). Najprostszy algorytm może wykorzystywać w tym celu wartość aktualnie wytwarzanej w instalacji PV mocy. Poprzez odpowiednio ustawione wartości załączenia i wyłączenia następuje sterowanie podłączonym odbiornikiem.

System Fibaro może dawać jednak znacznie więcej możliwości. Mając dokładną wiedzę o aktualnym bilansie energii elektrycznej w budynku, można z łatwością zaprogramować załączenie urządzeń na bazie wartości mocy oddawanej do sieci oraz ich wyłączenie – w przypadku gdy energia z sieci jest pobierana.

Ale możliwości kontroli i regulacji jest więcej. W przypadku pomp ciepła bardzo ważne jest, aby kompresor po załączeniu pracował przez określony, minimalny czas. Taki parametr możliwy jest do ustawienia w przypadku wykorzystania skryptów LUA, a nawet zwykłych scen.

Można również, jako priorytet wybrać przygotowanie c.w.u. nie później, niż do określonej godziny, np. 18:00, gdy domownicy wracają po pracy. Fibaro będzie sterował grzałką c.w.u. w zależności od dostępnego nadmiaru produkowanej energii, a jeśli będzie on w pochmurne dni niewystarczający – załączy podgrzewanie wody z odpowiednim czasowym wyprzedzeniem.

Monitorowanie pracy instalacji PV i podejmowanie różnorodnych akcji na bazie np. aktualnie uzyskiwanej mocy, czy tez możliwość sterowania pracą instalacji PV daje projektantom instalacji inteligentnego budynku nieograniczone pole możliwości.

Połączenie Fibaro i Fronius – zagadnienia techniczne

Fronius Datamanager 2.0

Standardowo każdy falownik nowej generacji SnapINverter (Fronius SYMO, GALVO, ECO i PRIMO) wyposażany jest w zaawansowaną kartę Datamanager 2.0. Oprócz podstawowej funkcji, jaką jest przesyłanie danych na portal Solar.Web (http://www.solarweb.com) karta ta posiada wiele interfejsów, które mogą z łatwością zostać wykorzystane do integracji instalacji fotowoltaicznej z systemem inteligentnego budynku. Są to m.in.:

  • interfejs JSON
  • Modbus RTU (via RS-485) oraz Modbus TCP (via Ethernet)
  • Push FTP / HTTP POST

Szczególnie ten pierwszy interfejs wydaje się być idealny do połączenia z systemem Fibaro. Prosty skrypt w języku LUA umożliwi odczyt bieżącej wartości mocy czy też ilości wyprodukowanej energii. Te dwie liczby na początkowym etapie w zupełności wystarczą do zaspokojenia podstawowych potrzeb użytkowników takich połączonych instalacji:

  • wizualizacji
  • sterowania odbiornikami energii

Fibaro HC2 / HCL

Najwygodniejszą formą połączenia interfejsu Fronius z Fibaro byłoby wykorzystanie mechanizmu plug-inów, który daje łatwość instalacji i kompatybilność z HC2 oraz HCL.

Niestety, w obecnej wersji Fibaro nie jest możliwe tworzenie własnych plug-inów, ani pobieranie danych ze „zwykłych” plug-inów, które mogłyby służyć do sterowania, np. do wyzwalania scen opartych o bloki. Wyjątkiem jest plug-in pogodowy (YR i/lub Yahoo Weather), który zarówno zintegrowany jest z pulpitem, jak i stanowi osobną sekcję wśród wyzwalaczy.

Rozwiązaniem alternatywnym mogą być urządzenia wirtualne (VD), w których może zostać umieszczony odpowiedni skrypt w języku LUA. Takie rozwiązanie niestety wyklucza możliwość użycia centrali Home Center Lite (HCL), ale jest akceptowalne, ze względu na duży stopień wykorzystania Home Center 2 (HC2) w instalacjach.

Inteligentne liczniki Z-Wave

Docelowo w instalacji inteligentnego domu należy przewidzieć zastosowanie licznika energii Z-wave, który zainstalowany na styku budynku i OSD (np. szeregowo z licznikiem OSD) dokonywałby pomiarów zużycia energii we wszystkich fazach dla całego budynku. Aktualnie istnieją takie rozwiązania, np. licznik Aeon Labs HEM Gen 5. Licznik ten w wersji 3-fazowej posiada 3 przekładniki prądowe do założenia na przewodach w celu pomiaru prądu oraz 4 przewody do pomiaru napięć. Dokładność pomiaru jest wystarczająca na potrzeby wizualizacji i/lub sterowania. Licznik ten umożliwia pomiar dwukierunkowy, tzn. zarówno energii pobieranej z sieci (ze znakiem „+”), jak i energii oddawanej do sieci (ze znakiem „–”)

Więcej na temat licznika: http://aeotec.com/z-wave-home-energy-measure

W systemie Fibaro nie ma aktualnie możliwości ustawienia poziomów / priorytetów w urządzeniach mierzących zużycie energii elektrycznej. To znaczy, że pomiar dokonany przez WallPlug zostanie dodany do pomiaru dokonanego przez licznik energii pobieranej przez cały budynek.

Dodatkowym problemem jest prezentacja/wizualizacja ujemnych wartości energii, symbolizujących nadwyżkę produkowanej energii oddawanej do sieci. Taka opcja nie jest na chwilę zaimplementowana w systemie Fibaro.

Inteligentne liczniki Fronius Smart Meter

Alternatywnie, dane dotyczące oddawanej i pobieranej energii do/z sieci elektroenergetycznej OSD mogą być pobierane (również w skrypcie LUA) z licznika inteligentnego Fronius Smart Meter poprzez interfejs JSON Datamanagera. Ograniczone możliwości wizualizacji w panelu energii Fibaro mogą być zastąpione przez zaawansowany interfejs graficzny portalu Solar.Web, pozwalający na zaawansowaną analizę produkcji oraz zużycia energii, w tym bilans energetyczny.

KONCEPCJA POŁĄCZENIA

Możliwość integracji pomiędzy automatyką budynkową Fibaro, a instalacją PV bazującą na falownikach Fronius jest niezwykle łatwa do uzyskania.

Od strony falownika można tego dokonać poprzez protokół JSON (ang. Java Script Object Notation), standardowo dostępny w urządzeniu Fronius Datamanager 2.0. Firma Fronius udostępnia obszernie udokumentowane API (link do pliku), które daje możliwość odczytania praktycznie wszystkich kluczowych danych instalacji PV, począwszy od parametrów pracy falowników (w tym najważniejszych: aktualnej mocy i oddanej energii), ale również danych ze stacji pogodowej, przepływów energii przez inteligentny licznik Fronius Smart Meter, czy też magazynu energii Fronius Solar Battery.

Przykładowe kody umożliwiające odczyt danych dotyczących całego systemu, poszczególnych urządzeń oraz przepływów energii w układzie.

http://<IPAddress:TCPPort>/solar_api/GetAPIVersion.cgi
http://<IPAddress:TCPPort>/solar_api/v1/GetActiveDeviceInfo.cgi?DeviceClass=System
http://<IPAddress:TCPPort>/solar_api/v1/GetInverterRealtimeData.cgi?Scope=System
http://<IPAddress:TCPPort>/solar_api/v1/GetInverterRealtimeData.cgi?Scope=Device&DeviceId=1&DataCollection=CommonInverterData
http://<IPAddress:TCPPort>/solar_api/v1/GetPowerFlowRealtimeData.fcgi

Gdzie: <IPAddress:TCPPort> to adres IP (zaleca się nadawanie adresu statycznego!) oraz port (standardowo: 80) karty Datamanager 2.0 w sieci wewnętrznej.

Jako przykład została wybrana funkcja „GetPowerFlowRealtimeData”, która w jednym zapytaniu umożliwia odczyt najważniejszych danych dla całego systemu:

http://<IPAddress:TCPPort>/solar_api/v1/GetPowerFlowRealtimeData.fcgi

Przykład danych uzyskanych powyższym zapytaniem zamieszczono w tabeli 2 poniżej:

String JS Eval
{
"Head" : {
"RequestArguments" : {},
"Status" : {
"Code" : 0,
"Reason" : "",
"UserMessage" : ""
},
"Timestamp" : "2017-03-12T08:53:31+01:00"
},
"Body" : {
"Data" : {
"Site" : {
"Mode" : "produce-only",
"P_Grid" : null,
"P_Load" : null,
"P_Akku" : null,
"P_PV" : 14174,
"E_Day" : 27021.800476,
"E_Year" : 27062257.75,
"E_Total" : 289067759.125
},
"Inverters" : {
"1" : {
"DT" : 121,
"P" : 1032
},

 

Graficzna reprezentacja powyższych danych może wyglądać następująco:

H:\TechSupport\Solar\07 partners\Fibaro\rys_03d.png

Rys. 2. Graficzna reprezentacja danych z zapytania JSON

W Fibaro Home Center 2 należy stworzyć tzw. urządzanie wirtualne (ang. Virtual Device, VD) z krótkim kodem w języku skryptów „Lua”.

Podstawą skryptu jest funkcja json.decode(), która w formie zagnieżdżonych tablic asocjacyjnych daje dostęp do wszystkich przekazanych wartości:

fronius =
{ { „Head”, <tablica_Head> },
{ „Body”, <tablica_Body> } }

Przykładowo, wartość mocy wytwarzanej w instalacji PV („P_PV”):

fronius Body Data Site P_PV

może zostać odczytana w skrypcie w następujący sposób:

P_PV = fronius[“Body”].Data.Site.P_PV

lub

P_PV = fronius.Body.Data.Site.P_PV

Do poprawnego działania skryptu konieczne jest zdefiniowanie w VD następujących etykiet („Label”):

load
pv
grid
eday

Zaznaczenie „Label” jako „Main” spowoduje wyświetlanie wartości w oknie głównym.

Natomiast, aby używać danych w scenach, należy je zapisać do uprzednio zdefiniowanych zmiennych globalnych w panelu „Variables”. Przykładowo:

-- set the global variables
fibaro:setGlobal ('PV_plant_load', P_Load)
fibaro:setGlobal ('PV_plant_grid', P_Grid)
fibaro:setGlobal ('PV_plant_pv', P_PV)
fibaro:setGlobal ('PV_plant_eday', E_Day)

Przykładowy kod skryptu do Virtual Device

Do pobrania po akceptacji regulaminu. Wyłącznie dla zarejestrowanych użytkowników!

Podsumowanie

Kod napisany jest w taki sposób, aby adres IP Datamanagera w sieci lokalnej oraz port (standardowo 80) był podawany w panelu kontrolnym Virtual Device. W przypadku zaimportowania VD do centrali HC2 są to jedyne dane, które powinny zostać skonfigurowane (poza definicją zmiennych globalnych), co ułatwia proces instalacji.

H:\TechSupport\Solar\07 partners\Fibaro\PV_plant_VD_General — krótki.png

Rys. 3. Panel konfiguracyjny Virtual Device z polami na adres IP oraz port, pod którym dostępny jest Datamanager 2.0

Niestety, w chwili obecnej wykorzystanie podstawowej funkcjonalności i stworzenie odpowiednich powiązań wymaga od firmy instalacyjnej umiejętności pisania kodu w języku „Lua”, dla instalatorów systemów automatyki domowej nie powinna być to jednak przeszkoda.

Niemniej jednak, wykorzystanie bardziej zaawansowanych funkcji, takich jak umieszczenie źródła energii w „Energy Panel” będzie wymagało stworzenia dedykowanego plug-inu.

Przykład wizualizacji urządzenia wirtualnego zbierającego dane z elektrowni fotowoltaicznej przedstawiono na rysunkach od 4 do 6:

H:\TechSupport\Solar\07 partners\Fibaro\proof-of-concept_HC2_v1.png

Rys. 4. Przykład wizualizacji danych pobieranych z elektrowni PV

H:\TechSupport\Solar\07 partners\Fibaro\proof-of-concept_HC2_v3.png

Rys. 5. Dane dostępne w urządzeniu wirtualnym (VD)

H:\TechSupport\Solar\07 partners\Fibaro\PV_plant_VD_Variables.png

Rys. 6. Dane pochodzące z elektrowni dostępne jako zmienne globalne

Powiązanie danych pochodzących z instalacji PV (poprzez zmienne globalne) ze sterowaniem najprostszym urządzeniem jakim jest Fibaro Wall Plug daje nam nieograniczone możliwości zaprogramowania „scen”: alarmy, progi zadziałania, zależności czasowe, monitorowanie, zaawansowana analiza produkcji i zużycia energii oraz bazujące na tych informacjach inteligentne sterowanie odbiornikami energii. Nic nie stoi na przeszkodzie, aby odpowiednio sterować również bardziej zaawansowane urządzenia, choćby ściemniacze (ang. dimmer) czy kontrolery LED RGBW, których w sieci Z-Wave może być nawet 232.

ZAŁĄCZNIKI





Fibaro i Fronius – instrukcja integracji

Fibaro i Fronius – instrukcja integracji

Niniejszy dokument ma na celu wyjaśnienie korzyści wynikających ze współpracy urządzeń firm Fibar Group (Home Center 2) oraz falowników firmy Fronius (Symo, Primo, Galvo, itp.)

Jak prosto można sterować mocą czynną i bierną falownika

Jak prosto można sterować mocą czynną i bierną falownika

W ostatnich dniach pojawiły się informacje, że Prezes URE nie podpisze aktualizacji kart IRiESD w ich obecnym kształcie. Musimy jednak pamiętać, że Ustawa z dnia 10 kwietnia 1997 r. Prawo energetyczne, Art. 7. ust 8d10 mówi wyraźnie:

Nie ma jeszcze doświadczeń z rynku polskiego, jak miałoby wyglądać takie ograniczenie mocy. Jeśli jednak polscy OSD skorzystaliby z rozwiązań znanych na rynku niemieckim, to sterowanie takie jest bardzo proste w swojej idei: z “czarnej skrzynki” (nazywanej ripple controller) wyprowadzone są styki, które mogą być “zamknięte” lub “otwarte”. Operator Systemu Dystrybucyjnego definiuje jakie jest znaczenie tych stanów, np.:

Analiza tych stanów jest niezwykle prosta do zrealizowania przez kartę Datamanagera i jej cyfrowe wejścia/wyjścia. Wystarczy wykonać połączenia jak na rysunku poniżej a w Edytorze EVU zdefiniować odpowiednie reguły. I tak:

Rys. 1. Wszystkie styki otwarte = 100% mocy.

Rys. 2. Styk 1 zamknięty = 75% mocy.

 

Rys. 3. Styk 2 zamknięty = 50% mocy i cos φ = 0.95 indukcyjny.

Na ostatnim diagramie pokazano również w jaki sposób można przekazać informację zwrotną o zastosowaniu danej reguły.
Szczegółowy opis konfiguracji zamieszczamy poniżej.

Ustawienia — Edytor EVU

Informacje ogólne

W pozycji menu „Edytor EVU” konfiguruje się ustawienia istotne dla dostawców energii elektrycznej.
Można tu ustawić ograniczenie mocy czynnej w % i/lub ograniczenie współczynnika mocy.
WAŻNE! Ustawienia w pozycji menu „Edytor EVU” mogą konfigurować wyłącznie osoby upoważnione, np. instalatorzy lub serwisanci instalacji fotowoltaicznej!
W pozycji menu „Edytor EVU” konieczne jest podanie hasła serwisowego.

Edytor EVU — sterowania we./wy.

Edytor EVU — ustawienie fabryczne 100%, 60%, 30% i 0% mocy czynnej.
Ustawienia można zmienić w dowolnym czasie.

Opis:
 (1) Uaktywnianie reguł
 (2) Wzorzec wejściowy (przypisanie poszczególnych we./wy.)
           kliknięcie jednokrotne = biały
           kliknięcie dwukrotne = niebieski
           kliknięcie trzykrotne = szary
Wirtualne przyporządkowanie we./wy. wyświetlane jest zgodnie z informacjami zawartymi w rozdziale „Ustawienia — przyporządkowanie we./wy.” (patrz “Instrukcja użytkowanie Datamanager 2.0”).
W przypadku starszych wersji oprogramowania wygląd ekranu może różnić się od przedstawionego.
 (3) Najpierw uaktywnić moc czynną, a następnie wprowadzić żądaną moc czynną w %.
 (4) Najpierw uaktywnić współczynnik mocy cos phi , a następnie wprowadzić żądany współczynnik mocy i na koniec wybrać “ind” lub “poj.”.
           ind = charakter indukcyjny
           poj. = charakter pojemnościowy
 (5) Wyjście EVU (wyjście komunikatów zwrotnych) przy aktywnej regule uaktywniane jest wyjście I/O 0 (np. w celu umożliwienia pracy urządzenia sygnalizującego)
 (6) Wykluczone falowniki
Tutaj należy podać numery falowników, które mają być wykluczone z regulowania. Większą liczbę falowników oddzielić przecinkami.
 (7) Skasuj / Dodaj regułę
           + = dodawanie nowej reguły
            – = skasowanie aktualnie wybranej reguły
 (8) Legenda kolorów
 (9) Kliknąć przycisk „Importuj”, aby zaimportować reguły w formacie FPC.
Funkcja przycisku „Importuj” jest uzależniona od używanej przeglądarki internetowej, np. obsługują ją przeglądarki Firefox i Google Chrome.
 (10) Kliknąć przycisk „Eksportuj”, aby zapisać reguły oddzielnie w formacie FPC.
 (11) Przycisk „Zastosuj / zapisz”
 (12) Przycisk „Anuluj / odrzuć wprowadzone dane”

WSKAZÓWKA! Dzięki funkcji wydruku z poziomu przeglądarki internetowej można wygenerować ustawienia w pozycji menu „Edytor EVU” jako dokument w formacie PDF lub je wydrukować (np. w formie protokołu uruchomienia).

Przykład podłączenia

2 odbiorniki sygnału sterowania częstotliwością akustyczną, podłączone do wejść/wyjść urządzenia Fronius Datamanager 2.0

 (1) Odbiornik sterowania zdalnego wyposażony w 3 przekaźniki, do ograniczania mocy czynnej
 (2) Odbiornik sterowania zdalnego wyposażony w 3 przekaźniki, do ograniczania współczynnika mocy
 (3) Wejścia/wyjścia w urządzeniu Fronius Datamanager 2.0
 (4) Odbiornik (np. lampa sygnalizacyjna, przekaźnik sygnalizacyjny)

Odbiornik sterowania zdalnego i wtyczka urządzenia Fronius Datamanager 2.0 są połączone ze sobą za pomocą 4-stykowego kabla, zgodnie ze schematem połączeń. W przypadku, gdy odległość między urządzeniem Fronius Datamanager 2.0 a odbiornikiem sterowania zdalnego jest większa niż 10 m, zalecane jest zastosowanie kabla ekranowanego.

W przypadku takiego zastosowania, w punkcie menu „Przypisanie IO” dla opcji Sterowanie WE/WY trzeba zdefiniować 6 styków. Odpowiednie ustawienia w edytorze EVU:

Przykładowe ustawienia w edytorze EVU dla 2 odbiorników sygnału sterowania częstotliwością akustyczną:
(1) Ograniczenie mocy czynnej,
(2) Ograniczenie współczynnika mocy
* … wirtualne przypisanie IO zgodnie z opisem w rozdziale „Ustawienia — przypisanie IO” (patrz strona 83 podręcznika “Fronius Datamanager – instrukcja obsługi”).