Kategoria: Instalowanie

Poprawne połączenie przewodów w magistrali RS-485 (Modbus RTU)

Poprawne połączenie przewodów w magistrali RS-485 (Modbus RTU)

Modbus RTU króluje wśród standardów komunikacji przemysłowej od prawie 50 lat. Największą zaletą jest zgodność tysięcy różnego rodzaju urządzeń i sterowników, które dzięki Modbus RTU mogą między sobą wymieniać różne dane. Również firma Fronius oferuje ten interfejs na karcie Datamanager 2.0, znajdującej się na podstawowym wyposażeniu większości falowników.  Dzięki temu możliwe jest podłączenie do falownika inteligentnego, dwukierunkowego licznika energii Fronius Smart Meter, ale również podłączenie falownika do różnego rodzaju systemów BMS lub SCADA. Między innymi dlatego na infolinii Wsparcia Technicznego często pojawia się pytanie, jak poprawnie wykonać połączenie magistrali RS-485, która właśnie wykorzystywana jest jako medium w komunikacji Modbus RTU.

Modbus RTU & TCP oraz Datamanager 2.0

Na początek kilka definicji oraz wyjaśnienie, jakie standardy są dostępne w przypadku produktów Fronius i do czego mogą zostać wykorzystane:

Karta Fronius Datamanager 2.0:

  • – zawiera Modbus RTU oraz Modbus TCP
  • – może działać jako Modbus RTU Master lub jako RTU Slave
  • – może działać jako Modbus TCP Client lub jako TCP Server

Modbus RTU jest wykorzystywany w Datamanager 2.0 do podłączenia:

  • – liczników energii Fronius Smart Meter
  • – akumulatorów (Fronius Solar Battery, LG Chem RESU H)
  • – sterownika obciążenia Fronius Ohmpilot
  • – urządzeń innych firm

Modbus TCP jest wykorzystywany w Datamanager 2.0 do

  • – podłączenia urządzeń firm trzecich
  • – sterowania Fronius Ohmpilot

Podstawy Modbus RTU & RS-485

Poniżej wyjaśnienie podstawowych zasad tworzenia magistrali RS-485 w formie kilku prostych punktów:

  • – RS-485 to standard definiujący interfejs połączenia elektrycznego (nie protokół!). Magistrala RS-485 stosowana jest w protokole “Modbus RTU” na urządzeniu Datamanager 2.0.
  • – Fizyczny nośnik jest zbalansowanym/zrównoważonym kablem połączeniowym, zwanym “skrętką“. Dwie linie (A i B) MUSZĄ wykorzystywać JEDNĄ skręconą parę!
  • – Sygnał elektryczny jest zbalansowany (różnicowa transmisja sygnału). Jest to komunikacja odpowiednia dla otoczenia, w którym występują zakłócenia.
  • – Topologia magistrali jest liniową topologią punkt-punkt, która może być rozszerzona na wiele punktów

Uwaga: połączenie w “gwiazdę” lub “równoległe” jest nieprawidłowe! –> prowadzi do nadmiernie wysokich odbić lub niskiej impedancji

  • – Magistrala RS-485 może być zrealizowana jako system “2-przewodowy” lub “4-przewodowy” (Datamanager 2.0 oferuje tylko opcję 2-przewodową).
  • – Magistrala RS-485 musi mieć tylko dwa końce i muszą być zakończone terminatorami (rezystory 120 Ω), aby uniknąć odbić i obniżyć impedancję (zmniejsza to wrażliwość na zakłócenia).
  • – Obie linie danych powinny być wyrównane do potencjałów +5V i GND, aby uniknąć „pływającego” potencjału. Zapewnia to bezpieczną pracę i zmniejsza wrażliwość na zakłócenia, gdy żaden węzeł nie zasila linii lub magistrala jest uszkodzona / zwarta.

Połączenia sygnałów są zwykle oznaczone jako:

D + (A) (+) sygnał nieodwrócony
D – (B) (-) sygnał odwrócony
(C) (wspólne GND)
  • – Nie ma zalecenia, jak podłączyć ekran przewodów RS-485
  • – Tylko urządzenie RTU Master może zainicjować komunikację na magistrali

 

Architektura magistrali RS-485 – Schemat

  • – Rezystory polaryzacji (pull-up i pull-down) nie są montowane w urządzeniu DataManager w celu zapewnienia elastyczności
  • – Dwie linie danych MUSZĄ być jedną skręconą parą!
  • – Zaleca się, aby długość magistrali od terminatora do terminatora nie przekraczała 300m, choć przy niższych parametrach transmisji może ona być znacznie dłuższa (nawet do 1200m). Oczywiście pod warunkiem, że fizyczne połączenie zostało wykonane zgodnie ze wszystkimi przedstawionymi w tym artykule zaleceniami.

Architektura magistrali RS-485

Uziemiony ekran jest tutaj przykładem dla pojedynczego punktu połączenia PE, ale nie dajemy zaleceń dotyczących ekranowania, z  jednym wyjątkiem: NIGDY nie podłączaj ekranu do sygnału-GND!

Przełącznik Master / Slave na Datamanager nie odpowiada funkcji Modbus RTU!

RS-485 – wewnątrz przewodów

Czasami instalatorzy popełniają taki błąd To jest jedyny poprawny sposób połączenia
© janitza.de © janitza.de

Uziemienie sygnału (C) jest obowiązkowe, jeżeli interfejs nie jest izolowany galwanicznie.

Podsumowanie

Zawsze potrójnie sprawdź, czy okablowanie RS-485 jest naprawdę w doskonałym stanie, zanim zmarnujesz swój czas!

Narzędzia Wire Solutions w fotowoltaice

Narzędzia Wire Solutions w fotowoltaice

Oferujemy narzędzia pojedyncze lub w zestawach, dzięki którym wydajniej będą mogli Państwo pracować przy systemach fotowoltaicznych.

Pozyskiwanie energii elektrycznej ze słońca poza modą, staje się coraz bardziej opłacalną inwestycją na przyszłość, ze względu na rozwój technologii wytwarzania systemów fotowoltaicznych. Jak wiadomo są to projekty zakładające długoletnie korzystanie z zainstalowanych systemów, w związku z czym bardzo ważna jest jakość połączeń przesyłających energię i ich obróbka.

W naszej strefie klimatycznej ogromnie ważna jest długoterminowa odporność na skrajne warunki atmosferyczne, w których to musi pracować połączenie paneli z systemem odbioru i przetwarzania energii.

Coraz bardziej przystępne ceny i różnego rodzaju dotacje sprawiają, że zarządy korporacji, jak również użytkownicy indywidualni inwestują w odnawialne źródła energii.

  1. Dlaczego ważny jest prawidłowy dobór narzędzi do złącz dostępnych na rynku fotowoltaicznym?Panele powinny być podłączone z największą starannością i dbałością o prawidłowość zacisku, aby zminimalizować straty przewodzenia energii do inwentera.Seria narzędzi firmy RENNSTEIG dedykowana specjalistom w dziedzinie fotowoltaiki optymalizuje proces obróbki przewodów i złącz, tworząc szczelne i odporne na czynniki atmosferyczne połączenia kabli ze złączami dedykowanymi w systemach fotowoltaicznych. Zapewniając również minimalizację strat i bardzo dobre przenoszenie wytworzonej energii.
  2. Co oferujemy? Szeroki wybór narzędzi do prac fotowoltaicznych firmy RENNSTEIG dedykowany jest dla firm zajmujących się budową i instalacją a także serwisem, które stawiają na fachową obsługę klientów chcących korzystać z zasobów energii słonecznej.

Ciągły rozwój branży sprawia, że profesjonalni instalatorzy muszą nadążyć za zmianami, by móc w sposób poprawny instalować i serwisować systemy fotowoltaiczne, według specyfikacji producentów, takich jak:

Podążając za ogólnoświatowym trendem wykorzystywania naturalnych źródeł energii i korzystania z ich niewyczerpalnych zasobów, przedstawiamy Państwu ofertę narzędzi przeznaczonym specjalistom w zakresie fotowoltaiki.

Stosowanie rozwiązań firmy RENNSTEIG oferowanych przez WIRE SOLUTIONS pozwala na pracę zarówno małym jak i dużym firmom, które dzięki optymalizacji rozwiązań dla branży fotowoltaicznej pozwolą w chwili zwiększenia zapotrzebowania na ilość zaciskanych końcówek płynnie przejść od zaciskania ręcznego do narzędzi akumulatorowych, aż po pneumatyczne prasy stacjonarne.

PEW 12 E-PEW 12 CM25-3

Wszystko to przy użyciu jednego zestawu matryc dla danego złącza, które można stosować zarówno w narzędziu ręcznym

PEW 12 w przypadku małej ilości zaciskanych złącz. Następnie przechodząc do E-PEW 12 – zaciskarki akumulatorowej w średniej i dużej produkcji, aż po CM 25-3.1 – prasę pneumatyczną, która doskonale sprawdzi się w dużej produkcji jako stacjonarne urządzenie produkcyjne.

  1. Wysoką jakość połączenia i zminimalizowanie strat energii należy zacząć od przycięcia kabla.Dedykowanym narzędziem dla branży fotowoltaicznej są nożyce D15 – 700 015 36 (wersja 700 016 36 wyposażona jest w blokadę otwierania ostrzy). Specjalnie frezowane i polerowane ostrza wysokiej trwałości wykonane są z kutej stali, co zapewnia gładkie i czyste cięcie. Nożyce przeznaczone są do cięcia kabli aluminiowych i miedzianych, jedno i wielożyłowych. Zaprojektowana rękojeść ze wzmocnionymi plastikowymi uchwytami ułatwia cięcie przy użyciu jednej ręki, nie krusząc i nie deformując kabli.
    http://photovoltaic-software.com/img/voltage-drop-pv-cable-AC-DC-energy-losses.jpg
  2. Następnym procesem optymalizującym wydajność pracy jest narzędzie do ściągania izolacji z przewodów, bez pozostawiania śladów na izolacji.
    Ściągacz izolacji 708 226 3 posiada system czterech noży wykonanych ze specjalnie hartowanej stali sprężynowej. Wyposażony jest w regulowany ogranicznik długości ściągania izolacji, usuwa bez obcierania i odkształcania izolację z przewodów o zakresie przekrojów od 1,5 do 6 mm2.

  3. Jakość połączenia końcówki z przewodem jest najważniejszym wyznacznikiem profesjonalizmu wykonania systemu fotowoltaicznego. W tym celu firma RENNSTEIG opracowała narzędzie PEW 12 z systemem wymiennych matryc do najczęściej stosowanych końcówek stosowanych w branży fotowoltaicznej: MC4, MC3, Wieland, Tyco i Helios H4.

Matryce są przystosowane do zacisku końcówek na najczęściej stosowanych przewodach o przekrojach przewodów od 0,14 do 10,00 mm2.

Jest to doskonałe rozwiązanie, które docenią fachowcy montujący różne typy złączy. Prace montażowe można wykonywać przy użyciu jednego narzędzia z wymieniając jedynie matryce dedykowane do danej końcówki, bez potrzeby zakupu kompletu drogich narzędzi innych producentów.

Dodatkowo istnieje możliwość doposażenia narzędzia PEW 12 w pozycjoner, dzięki któremu uzyskamy gwarancję precyzyjnego zacisku.

https://www.heamar.co.uk/24007/rennsteig-62481731-crimping-tool-pew12-817.jpg

Wszystkie powyższe narzędzia można kupić osobno, lub w postaci gotowego zestawu do którego są dołożone wybrane przez Państwa dwie matryce wraz z pozycjonerami.

  1. Zestaw narzędzi fotowoltaicznych 624 105-9 dedykowany profesjonalistom ceniącym sobie wysoką jakość pracy i precyzję wykonanych połączeń, można zakupić w promocyjnej cenie do końca czerwca 2017.
    https://cdn.rennsteig.com/images/rennsteig/produkte/solar/62410509.jpg?1430219037
  2. Dla osób które używają tylko złącz MC4 polecamy narzędzie 3w1, którym możliwe jest przycięcie przewodu, jego odizolowanie i zacisk złącza. Martyce które są oferowane dla tego rozwiązania przygotowane są na dwa przekroje przewodów: 4 i 6 mm2.
    https://cdn.rennsteig.com/images/rennsteig/produkte/solar/6240063.jpg?1430219036   https://cdn.rennsteig.com/images/rennsteig/produkte/solar/csc.jpg?1430219038

 

Dodatkowe materiały – filmy:

E-PEW 12
Twistor 16
Solar tools
Szczypce do zaciskania PEW 12


Artykuł w wersji do pobrania:

Zapraszamy do kontaktu:

             

Dział Marketingu Wire Solutions
Katarzyna Sidzina
tel. +48 734 120 777
e-mail: k.sidzina@wiresolutions.pl

WIRE SOLUTIONS jest dynamicznie rozwijającą się firmą specjalizują się w zaopatrywaniu przedsiębiorstw produkcyjnych w elementy do wiązek kablowych, narzędzia ręczne, automaty i półautomaty. Dzięki naszemu doświadczeniu i specjalistycznemu podejściu do zamówień potrafimy spełnić oczekiwania nawet najbardziej wymagających Klientów, zapewniając ciągłość łańcucha dostaw, profesjonalne doradztwo i serwis. Organizujemy również szkolenia dla instalatorów.

Ograniczenie ryzyka wystąpienia pożaru w instalacjach PV

Ograniczenie ryzyka wystąpienia pożaru w instalacjach PV

Niniejszy materiał bazuje na dokumencie opracowanym przez Niemieckie Stowarzyszenie Przemysłu Solarnego (Bundesverband Solarwirtschaft e.V.) – BSW-Solar. Bardzo dziękujemy za zgodę na wykorzystanie materiałów i publikację tych niezwykle ciekawych wytycznych na polskim rynku.

Fronius Polska Sp. z o.o.

WPROWADZENIE

W instalacjach elektrycznych, a więc także w systemach fotowoltaicznych, bezpieczeństwo ma ogromne znaczenie. Systemy PV, które są projektowane, instalowane i eksploatowane zgodnie z ogólnie przyjętymi zasadami technicznymi są bezpieczne i niezawodne, nawet w najbardziej niesprzyjających warunkach pogodowych. Jednak mogą zaistnieć scenariusze zdarzeń, które wymagają dodatkowych urządzeń zabezpieczających. Na przykład w systemach, które nie są regularnie monitorowane i w których moduły są instalowane na łatwopalnym dachu lub izolacji.
Ten dokument ma za zadanie przedstawić wytyczne dla projektantów, instalatorów, inspektorów i rzeczoznawców do spraw zabezpieczeń p.poż.

POWSTAWANIE ŁUKU ELEKTRYCZNEGO

Łuk elektryczny może zdarzyć się tylko wtedy, gdy wystąpią poważne usterki w istotnych dla bezpieczeństwa systemu PV elementach i nie zostaną one zawczasu wykryte. Przyczyną może być np. uszkodzenie podwójnej izolacji przewodu DC w kilku miejscach lub zwiększona oporność na styku uszkodzonego złącza.

Zasadniczo rozróżnia się łuki równoległe i szeregowe. Łuki szeregowe nie są łatwe do zidentyfikowania. Jednak najlepiej można zapobiec ich powstawaniu lub co najmniej zminimalizować je, jeśli zastosuje się do wytycznych niniejszego dokumentu. W przypadku tak zwanych łuków równoległych już zapewnienie monitorowania stanu izolacji DC przez falownik zapewnia znaczną ochronę, ponieważ poprzez wyeliminowanie pierwszych symptomów błędów izolacji, w większości przypadków można zapobiec powstaniu łuku równoległego. Oznacza to jednak, że operator systemu fotowoltaicznego musi być szczególnie uczulony, aby analizować komunikaty o błędach pochodzące z falownika i poinformować o tym fakcie specjalistyczną firmę.

Przykładowo, dla falowników firmy Fronius błędy związane ze zbyt niską wartością stanu izolacji sygnalizowane są kodem #475.

ZASADY PROWADZENIA PRZEWODÓW

Środki zapobiegające powstawaniu łuków elektrycznych i rozprzestrzeniania się uszkodzeń są łatwe do wdrożenia w fazie projektowania oraz w fazie instalacji. Poniższe zalecenia oparte są na możliwych do zaobserwowania głównych przyczynach powstawania łuków elektrycznych w systemach fotowoltaicznych. Biorąc pod uwagę te zalecenia, ryzyko wyładowania łukowego jest w dużej mierze wykluczone, a jego skutki są ograniczone.

A. Typ kabli i przewodów

Należy stosować wyłącznie kable solarne odpowiednie do zastosowań zewnętrznych i trudnych warunków pogodowych oraz odporne na promieniowanie UV. W Europie obecnie stosowane są indywidualne specyfikacje dla poszczególnych krajów. Normy nie są identyczne, a przy wyborze kabli solarnych należy również wziąć pod uwagę ich ogniotrwałość.

B. Wykorzystanie kanałów kablowych

Kanały kablowe oferują niezawodną ochronę przed obciążeniami mechanicznymi kabli i przed ich uszkodzeniem mechanicznym. Należy pamiętać, że na końcach kanałów kablowych lub siatek kablowych, a także na odgięciach i rozgałęzieniach nie może być ostrych krawędzi. Mogą one prowadzić do uszkodzenia izolacji kabli. Metalowe kanały kablowe mogą również łagodzić skutki wyładowań łukowych, ponieważ nie są one wykonywane z materiału łatwopalnego.

Ryc. 1: Koryto z zadziorami.
Uwaga – niebezpieczeństwo uszkodzenia izolacji!
Ryc. 2: Gratowanie kanałów kablowych, tak aby izolacja przewodów pozostała nienaruszona przez dłuższy czas Ryc. 3: Należy stosować ochronę krawędzi lub dodatkowo zabezpieczoną instalację w plastikowych rurach w obszarze krawędzi i ugięć przewodów
Ryc. 4: Kratka kablowa z wolnymi końcami prętów i ostrymi krawędziami.
Uwaga – niebezpieczeństwo uszkodzenia izolacji!
Ryc. 5: Należy usunąć końcówki prętów lub użyć ochraniaczy krawędzi Ryc. 6: Zalecana jest prowadnica kabla zintegrowana w konstrukcji wsporczej

 

Podczas układania przewodów należy zapewnić, aby nie były one stale zanurzone w wodzie. W przeciwnym razie izolacja może zostać uszkodzona. Warunek ten musi być zapewniony podczas instalowania kabli.

Elastyczne kable muszą być prowadzone ze wsparciem mechanicznym i zabezpieczone przed wpływami środowiskowymi po zainstalowaniu na stałe (PN EN 50565-1). Wymogi te dotyczą również kabli fotowoltaicznych zgodnie z normą PN EN 50618.

C. Promienie gięcia

Promień gięcia określony przez producenta musi być przestrzegany. W przeciwnym razie izolacja może być nadmiernie naprężona, co prowadzi do powstawania pęknięć, szczególnie w niskich temperaturach.

W przypadku elastycznych przewodów do instalacji fotowoltaicznych z reguły promień gięcia nie powinien być mniejszy niż 4 x D.

Ryc. 7: Nie można oprowadzać do pękania izolacji Ryc. 8: Promień gięcia a średnica kabla

Podczas montażu kabli do skrzynek przyłączowych falowników, skrzynek przyłączeniowych modułów, wtyczek i rozdzielaczy, należy również zapewnić odpowiednie promienie gięcia. W szczególności w przypadku modułów montowanych poprzecznie, należy z góry rozważyć wystarczającą długość kabli. Zawsze należy przestrzegać dopuszczalnych promieni zginania.

Ryc. 9: Skrzynka połączeniowa modułu Ryc. 10: W przypadku modułów montowanych poprzecznie należy zwrócić uwagę na odpowiednie długości kabli, aby zachować zgodność z promieniem gięcia i uniknąć dodatkowych obciążeń rozciągających na modułowym gnieździe połączeniowym.

Przy zmianie kierunku wiązek kabli należy wziąć pod uwagę różne długości kabli.


Ryc. 11. Zmiana kierunku prowadzenia przewodów

Jeśli promień gięcia nie może być dotrzymany przez zbyt krótkie przewody łączące, jest to uważane za poważną wadę instalacji.

D. Bezpieczny montaż przewodów

Mocowanie kabli służy przede wszystkim do przenoszenia obciążeń. Chroni to kable i zintegrowane zabezpieczenia (np. złącza) przed odkształceniami i przed przeciążeniem mechanicznym. Nasadka powinna zapobiegać otarciom linii lub ścieraniu izolacji. Nie wolno uszkadzać izolacji przewodów urządzeniami mocującymi. Wymagania te mogą zwykle spełniać tylko odpowiednie urządzenia / wsporniki. Opaski kablowe nadają się zatem tylko do mocowania kabli, a nie do przenoszenia obciążenia. Można stosować wyłącznie opaski kablowe zatwierdzone do użytku na zewnątrz (w szczególności odporność na promieniowanie UV).

Odstępy mocowania muszą być przestrzegane zgodnie z instrukcjami producenta lub ustaleniami z producentem przewodów. Jeśli nie są one dostępne, przyjmuje się, że odległość montażowa przewodów PV w poziomie powinna być nie mniejsza niż 250 mm, a w pionie: nie mniejsza niż 400 mm.

Podstawowe wymaganie: przewody muszą być luźno ułożone, nie mogą być układane pod obciążeniem mechanicznym, muszą być odciążone i w wystarczającym stopniu uwolnione od naprężeń. W trakcie funkcjonowania instalacji nie mogą być nigdy poddawane mechanicznemu naprężeniu. Należy unikać kontaktu z ostrymi krawędziami lub porysowaniem na szorstkim podłożu.

Kable należy mocować w odstępach zgodnych z instrukcjami producenta.

E. Odciążenie

Odciążenie chroni połączenia liniowe przed przeciążeniem mechanicznym. W poszczególnych elementach (wtyczka, skrzynka przyłączeniowa modułu, itp.) są one często zintegrowane i dlatego mogą one absorbować jedynie ograniczone siły. Na przykład w przypadku wtyków PV o średnicach przewodów 4-9 mm zintegrowany w standardzie reduktor naprężeń może wytrzymać 80N (IEC / EN 62852). Ewentualnie występujące obciążenia muszą zostać pochłonięte przez sposób układania.


Ryc. 12: Złącza DC i skrzynki połączeniowe modułów z dławikami PG – zintegrowane przepusty absorbują siły tylko w ograniczonym zakresie.

F. Odpowiednie zaprojektowanie i ustawienie złączy

Układając złącza, należy upewnić się, że są one prawidłowo zainstalowane (patrz także Rozdział 4 – Zalecenia dotyczące odpowiednich komponentów). Wtyczki muszą być zaślepione zgodnie ze specyfikacją producenta i nie mogą być montowane pod naprężeniem mechanicznym (przestrzegać odciążenia, patrz rys. 12).


Ryc. 13: Złącze DC

Wtyki PV są zwykle chronione przed wnikaniem wody. Należy unikać trwałego zanużenia wtyczek w wodzie. Ciągłe narażenie na wodę może negatywnie wpływać na poprawność działanie złączy.

Należy unikać umiejscawiania złączy w zasięgu bezpośredniego działania światła słonecznego.

O ile to możliwe, podczas projektowania instalacji należy wziąć pod uwagę dostępność złączy dla późniejszych przeglądów i serwisu: w trakcie funkcjonowania instalacji należy zapobiegać ewentualnemu zanieczyszczeniu i powstawaniu mchu na złączach lub należy je regularnie usuwać. Wtyczki muszą być zainstalowane zgodnie ze specyfikacją producenta.

G. Ograniczenie możliwości rozprzestrzeniania się ognia

Łuk elektryczny może zapalić łatwopalne membrany dachowe i leżącą pod nimi izolację w przypadku bezpośredniego kontaktu. Na etapie planowania należy zatem sprawdzić, czy można zastosować niepalne membrany dachowe lub izolację. Jeśli nie jest to możliwe, wpływ ewentualnego wystąpienia łuku należy zminimalizować w sposób trwały i wystarczający – należy zapewnić odległości między przewodem i poszyciem dachu (kanały kablowe lub wystarczająco gruba baza mineralna, taka jak żwir).

Wybierając materiały instalacyjne, należy wziąć pod uwagę, że tworzywa sztuczne mają wyższy potencjał zapłonu i rozprzestrzeniania się ognia niż materiały metalowe.

H. Ochrona przewodów na dachu

Wejścia kablowe do budynku muszą być wykonane profesjonalnie. Nie należy prowadzić kabli po ostrych krawędziach i nie należy przytwierdzać ich bezpośrednio do dachu. Odnośnie wpływu grawitacji na przewody decydujące są specyfikacje producenta kabla. Należy przestrzegać zalecane maksymalne odległości poziomych i pionowych mocowań kabli. Opaski kablowe są niedozwolone w przypadku działania grawitacji na przewody.

Zasadniczo powierzchnia wszystkich pętli przewodów musi być utrzymywana na jak najniższym poziomie w celu zmniejszenia indukowanych napięć spowodowanych uderzeniami piorunów (Ryc. 14). Bezpośrednio przed wprowadzeniem do budynku zaleca się, aby przewody DC-plus i DC-minus były poprowadzone osobno w odległości 5 do 10 centymetrów od budynku.


Ryc 14. Przy układaniu przewodów należy minimalizować powierzchnię pętli.

Kontynuowaniu możliwego równoległego łuku przez wpusty dachowe można zapobiec poprzez osobne zamontowanie przewodów DC-plus i DC-minus bezpośrednio przed wprowadzeniem do budynku. Generalnie zaleca się stosowanie bariery ogniowej do wprowadzania kabli do budynku. W ten sposób zapobiega się przekazywaniu ognia przez tak zwany efekt bezpiecznika.

I. Bezpiecznie szafki rozdzielcze i rozdzielnice

Skrzynki przyłączowe modułów PV muszą spełniać wymagania normy PN-EN 61439-2 (i jej załączników).

Należy zapewnić prawidłowe podłączenie kabli oraz rozdzielenie strony dodatniej i ujemnej w skrzynkach przyłączeniowych generatora i innych skrzynkach zaciskowych. Zwiększona rezystancja styku z powodu niewłaściwego połączenia może doprowadzić do przegrzania punktu końcowego, a to z kolei: do ryzyka pożaru z powodu łuków szeregowych.

Nawet przy rozłącznikach należy przestrzegać specyfikacji producenta. Niektórzy producenci zalecają używanie rozłączników DC minimum raz każdego roku. W wyniku tego działania powstające osady tlenkowe są ścierane, a rezystancja kontaktu jest znacznie zmniejszona.

ZALECENIA DOTYCZĄCE ODPOWIEDNICH MATERIAŁÓW

A. Przewody

Najwłaściwsze jest zastosowanie jednożyłowych kabli PV z oznaczeniem PV1-F, a następnie H1Z2Z2-K (PN-EN 50618). Posiadają izolację, która pozwala na ich stosowanie w urządzeniach i systemach klasy II. Ponadto mają wysoką odporność na wpływy środowiska, takie jak promieniowanie UV i wysoką wytrzymałość mechaniczną. Jeśli inne przewody są używane jako linie główne lub stałe, muszą być uziemione i zabezpieczone przed zwarciem. Należy je chronić przed warunkami atmosferycznymi i promieniowaniem UV, np. w zamkniętych kanałach kablowych.

B. Złącza MC4

Należy stosować wyłącznie złącza zgodne z PN-EN 62852. Odpowiedniki (męskie / żeńskie) muszą być tego samego typu i producenta.

C. Kanały i korytka kablowe (systemy prowadzenia przewodów)

Kanały i korytka kablowe muszą być zatwierdzone przez producenta do użytku na zewnątrz. W przypadku kanałów kablowych producent powinien zapewnić odpowiednią ochronę krawędzi. Preferowane są metalowe kanały kablowe i rury instalacyjne, pod warunkiem, że są one odporne na korozję. Gdy stosowane są kanały z tworzywa sztucznego, muszą być odporne na warunki atmosferyczne, a zwłaszcza na promieniowanie UV i ozon.

D. Tuleje

W celu wprowadzenia kabla do kanały kablowego należy zastosować tuleje (np. zgodnie z DIN 18195 część 9).

E. Mocowania

Złącza kablowe nie są odpowiednie do mocowania kabli. Mogą być używane tylko do łączenia kabli. Do zamocowania należy zastosować odpowiednie zaciski kablowe, klipsy itp.

F. Falowniki

Falowniki powinny być bezwzględnie instalowane zgodnie z wytycznymi producenta. Ze względu na zakres tego tematu, zostanie mu poświęcone osobne opracowanie.

G. Uziemienie, ochrona odgromowa i przeciwprzepięciowa

Właściwe uziemienie instalacji fotowoltaicznej wraz z ewentualną ochroną przed skutkami wyładowań atmosferycznych mają ogromne znaczenie dla uniknięcia jakichkolwiek usterek elektrycznych, które mogłyby doprowadzić do powstania pożaru. Gorąco zachęcamy do zapoznania się z obszerną literaturą udostępnianą przez wiodących producentów tych rozwiązań, takich jak Jean-Mueller (CITEL) lub DEHN.

H. Uwaga ogólna

W przypadku obiektów rolniczych może być również konieczna odporność na działanie amoniaku.

OZNAKOWANIE

Dla bezpieczeństwa osób, zaleca się, aby budynek w którym znajduje się instalacja fotowoltaiczna posiadał oznakowanie zgodne z normą: PN-HD 60364-7-712:2016 w następujących miejscach:

  • w rozdzielni głównej budynku
  • obok głównego licznika energii (jeśli oddalony od rozdzielni głównej)
  • obok głównego wyłącznika
  • w rozdzielnicy, w której przyłączona jest instalacja fotowoltaiczna do instalacji elektrycznej budynku


Rys. 15. Etykieta wskazująca na obecność instalacji elektrycznej w budynku

REKOMENDACJE DOTYCZĄCE UŻYTKOWANIA

Aby zapewnić długoterminową wydajność i bezpieczeństwo pracy systemu PV, należy go poddawać regularnej inspekcji i konserwacji. Poniższy przegląd zawiera zalecenia dotyczące zawartości i częstotliwości konserwacji.

Kiedy Gdzie Co Kto Uwagi
Codziennie Falownik Kontrola wyświetlacza roboczego w celu uniknięcia utraty wydajności przy wyłączeniach awaryjnych Operator Alternatywnie: monitorowanie z aktywnym raportowaniem o błędzie do operatora
Monitoring danych operacyjnych (system) Kontrola stanu pracy za pomocą zdalnego monitorowania (w przypadku ochrony przeciwpożarowej należy zwrócić szczególną uwagę na błędy izolacji). Operator / serwis
Analizy komunikatów o błędach i odpowiednie działania serwisowe Serwis
Miesięcznie Licznik energii Monitorowanie wydajności: regularna rejestracja i analiza odczytów liczników

(nie dotyczy automatycznego gromadzenia i oceny danych operacyjnych).

Operator / serwis
Powierzchnia modułów Kontrola wzrokowa, czy występują poważne, oczywiste wady, takie jak przesunięte moduły, luźne: zaciski modułów, elementy ram montażowych lub kable solarne Operator Przemieszczanie się w okolicy pola modułów tylko po zatwierdzonych trasach!
Regularnie, najrzadziej co cztery lata Cała instalacja Powtórzenie pomiarów i testów przy uruchamianiu zgodnie z PN-EN 62446-1 Serwis
Sytuacyjne – po automatycznym wyłączeniu falownika Cała instalacja Rozwiązywanie problemów Serwis

*) W niniejszym dokumencie określenie „kable“ i „przewody“ stosowane jest zamiennie, choć skłaniamy się do definicji, wg której o ile każdy kabel jest przewodem, to nie każdy przewód jest kablem. W „Aparatach i urządzeniach elektrycznych” Witolda Kotlarskiego czytamy: „przewody mające izolację z materiałów stałych budowane są na niższe napięcia – maksymalnie do 6kV, a kable praktycznie na cały zakres stosowanych napięć.”

ŹRÓDŁO

Niniejszy artykuł bazuje na oryginalnym dokumencie „Merkblatt für Planer und Installateure. Lichtbogenrisiken an PV-Anlagen reduzieren” przygotowanym przez:

  • Bundesverband Solarwirtschaft e.V. – BSW-Solar (Niemieckie Stowarzyszenie Przemysłu Solarnego e.V. – BSW-Solar)
  • Deutsche Gesellschaft für Sonnenernergie e.V. – DGS (Niemieckie Towarzystwo Energii Słonecznej e.V. – DGS)
  • Fraunhofer-Institut für Solare Energie Systeme ISE (Fraunhofer Institute for Solar Energy Systems ISE)
  • GDV TÜV Rheinland – www.tuv.com
  • Gesamtverband der Deutschen Versicherungswirtschaft e.V. – GDV (Ogólne Stowarzyszenie Niemieckich Ubezpieczycieli e.V. – GDV)
  • Zentralverband der Deutschen Elektro- und Informationstechnischen Handwerke – ZVEH (Centralne Stowarzyszenie Niemieckiego Inżynierii Elektrycznej i Informatyki – ZVEH)

Pierwsza edycja: lipiec 2017 r

Wydawca niemieckiej edycji: Bundesverband Solarwirtschaft e.V.

Tłumaczenie na język polski: dr inż. Maciej Piliński, Fronius Polska Sp. z o.o.

ZASTRZEŻENIE

Zawarte w dokumencie informacje zostały pozyskane przez komitet ekspertów z BSW-Solar na podstawie wcześniejszych badań przyczyn powstawania i skutków działania ognia dla systemów fotowoltaicznych w projekcie www.pv-brandsicherheit.de TÜV Rheinland, Fraunhofer ISE i DGS Berlin Brandenburg we wrześniu 2015. Zalecenia, adaptacja i tłumaczenie były tworzone z najwyższą starannością. Wydawca oryginalnego dokumentu nie ponosi jednak żadnej odpowiedzialności za prawidłowość i przydatność informacji w indywidualnych przypadkach, ani za dokładność i rzetelność tłumaczenia na język polski. Niezbędna jest zatem wnikliwa analiza okoliczności i lokalnych przepisów, które należy zachować w przypadku konkretnej realizacji.

 


Artykuł do pobrania w wersji PDF – “Biała księga”

Podłączenie i konfigurowanie licznika energii z kartą Datamanager 2.0

Podłączenie i konfigurowanie licznika energii z kartą Datamanager 2.0

Produkcja energii elektrycznej w instalacji fotowoltaicznej jest dobrze znana (odczytywana bezpośrednio z falownika). Można ją rówież przedstawić w formie atrakcyjnych wykresów na portalu Solar.web. Jeżeli natomiast zainstalujemy dodatkowe liczniki energii,  pozwolą nam one na stworzenie profilu zużycia energii w budynku. Można zatem ustalić, co się dzieje z produkowaną energią: które odbiorniki z niej korzystają bezpośrednio, a ile energii oddajemy do sieci. Dzięki profilom zużycia można “wyłapać” np. nieprawidłowo działające odbiorniki (zamrażarka w piwnicy z zepsutym termostatem – z życia wzięte!). W instalacjach z falownikiem Fronius można zainstalować nawet 4 dodatkowe liczniki energii: 1 podstawowy (w torze zasilania) oraz trzy dodatkowe, które mogą mierzyć energię wybranych odbiorów (np. pompy ciepła) lub innych źródeł energii (np. falownik wiatraka).

UWAGA! W jednej instalacji można wykorzystać różne typy liczników, np.:

  • Fronius Smart Meter 50kA-3 jako licznik główny,
  • Fronius Smart Meter 63A-1 do monitorowania jednofazowej pompy ciepła
  • licznik S0 do monitorowania zużycia energii przez grzałkę w zbiorniku c.w.u.
  • Fronius Smart Meter 63-3 do monitorowania drugiego źródła energii (np. wiatraka) 

Poniżej wyjaśniamy, jak skonfigurować podłączenie licznika Fronius Smart Meter oraz licznika S0 na stronie www karty Datamanagera. Informacje te zostały zaczerpnięte z instrukcji obsługi karty Datamanagera, która może zostać pobrana ze strony Fronius Polska.

Informacje ogólne

WAŻNE! Ustawienia w pozycji menu „Liczniki” może konfigurować wyłącznie przeszkolony personel specjalistyczny!
W pozycji menu „Liczniki” konieczne jest podanie hasła serwisowego (login: service).

Menu “Licznik”

 

Rys.1. Ustawienia licznika w menu karty Datamanager

(1) Pole wyboru licznika:

– brak wybranego licznika;

– Fronius Smart Meter;

– falownik S0 (tylko w przypadku modeli Fronius Galvo, Fronius Symo i Fronius Primo).

(2) Odnośnik do schematu połączeń liczników

(3) Przycisk „Zastosuj/zapisz”

(4) Przycisk „Anuluj / odrzuć wprowadzone dane”


Fronius Smart Meter

Rejestracja zużycia własnego przez urządzenie „Fronius Smart Meter”.

Rys.2. Wybór licznika Fronius Smart Meter w menu karty Datamanager

(1a) Lokalizacja licznika w punkcie zasilania sieci (na styku budynku i OSD)

Nastąpi pomiar mocy i energii dostarczonej do sieci. Na podstawie tych wartości oraz danych instalacji określane jest zużycie.

(1b) Lokalizacja licznika w punkcie poboru energii (w torze odbiorników)

Nastąpi bezpośredni pomiar zużytej mocy i energii. Na podstawie tych wartości oraz danych instalacji określana jest moc i energia przekazana.

Rys.3. Możliwe lokalizacje instalacji licznika Fronius Smart Meter

Można używać urządzeń „Fronius Smart Meter” w wersji trój- lub jednofazowej. W obu przypadkach wyboru dokonuje się w pozycji „Fronius Smart Meter”. Urządzenie „Fronius Datamanager” automatycznie określa typ licznika.


Rys. 4. Podłączenie urządzenia „Fronius Smart Meter” do urządzenia „Fronius Datamanager 2.0”


Licznik S0

Rys. 5. ustawienia licznika S0 podłączego do Falownika nr 1 (“Falownik S0 1“)

(1a) Lokalizacja licznika w punkcie zasilania sieci (na styku budynku i OSD)

Nastąpi pomiar mocy i energii dostarczonej do sieci. Na podstawie tych wartości oraz danych instalacji określane jest zużycie.

Licznik S0 musi być skonfigurowany w tym miejscu tak, aby zliczał energię przekazaną do sieci.

WAŻNE! W przypadku licznika S0 w punkcie zasilania dane licznika nie będą wyświetlane w platformie „Fronius Solar.web”. Opcja ta jest przewidziana do zastosowania tylko dla dynamicznej redukcji mocy. W przypadku zasilania sieci wartości zużycia można określać tylko w ograniczonym stopniu.

(1b) Lokalizacja licznika w punkcie poboru energii (w torze odbiorników) – ZALECANA

Nastąpi bezpośredni pomiar zużytej mocy i energii. Na podstawie tych wartości oraz danych instalacji będzie określana moc i energia przekazana.

Licznik S0 musi być skonfigurowany w tym miejscu tak, aby zliczał energię zużytą.

(1c) Pole wprowadzania przelicznika impulsów na kWh

Rys. 6. Możliwe lokalizacje instalacji  licznika S0

Do falownika przez S0 można bezpośrednio podłączyć licznik w celu rejestracji wartości zużycia własnego (dotyczy tylko falowników Fronius Galvo, Fronius Symo, Fronius Primo i Fronius Eco).

WAŻNE! Licznik S0 jest podłączany do wejściowego interfejsu falownika. Podłączenie licznika S0 do falownika może wymagać aktualizacji oprogramowania sprzętowego.

Rys. 7. Lokalizacja kostki wejścia S0 w falowniku oraz schemat połączeń licznika

Wymagania dotyczące interfejsu licznika S0:

  • musi spełniać normę PN-EN 62053-31 Class B,
  • maks. napięcie 15 V DC,
  • maks. prąd w stanie włączonym 15 mA,
  • min. prąd w stanie włączonym 2 mA,
  • maks. prąd w stanie wyłączonym 0,15 mA.

Zalecana maks. liczba impulsów licznika S0:

Moc fotowoltaiczna kWp [kW] maks. liczba impulsów na kWp
30 1000
20 2000
10 5000
≤ 5,5 10 000

 

UWAGA: “Wejście S0”, wbrew swojej nazwie, jest tak naprawdę małym źródłem prądowym. Dzięki temu falownik może wykryć na tym styku, czy jest ono zwarte, czy też rozwarte, a dzięki temu: potrafi wykrywać i liczyć impulsy. Źródło to ma polaryzację, czyli “+” i “-“.
Natomiast nowe liczniki z interfesjem S0 mają wyjście impulsowe w formie transoptora (dzięki temu można zachować izolację galwaniczną), a dokładniej złącza Kolektor-Emiter w opto-tranzystorze. Złącze to może przewodzić prąd tylko w jednym kierunku. Dlatego należy zwrócić uwagę na polaryzację przewodów! W praktyce: jeżeli licznik S0 nie zostanie wykryty przez Datamanager, należy zamienić bieguny przewodów.
Schemat połączeń przedstawiono poniżej.

 

Przewymiarowanie instalacji względem mocy falowników Fronius

Przewymiarowanie instalacji względem mocy falowników Fronius

Na początku wyjaśnijmy podstawy: dlaczego należy przewymiarować instalację fotowoltaiczną względem mocy nominalnej falownika, a dalej zdefiniujemy jaki jest dopuszczalny stopień takiego przewymiarowania.

Dobieramy moduły do falownika czy falownik do modułów?…

Często można spotkać się z odmiennymi opiniami na temat relacji mocy modułów do mocy nominalnej falowników. Aby przeanalizować te przypadki, wprowadźmy definicję współczynnika mocy falownika (ang. inverter ratio, IR). Wzór na obliczenie tego współczynnika można zapisać:

Możliwe są tu trzy warianty:

  1. IR < 100%, falownik niedociążony – moc nominalna modułów jest mniejsza niż moc nominalna falownika
  2. IR = 100%, falownik obciążony mocą nominalną,
  3. IR > 100%, falownik przeciążony po stronie DC – moc nominalna modułów jest większa niż moc nominalna falownika

Dla szerokości geograficznej Polski i Europy Centralnej przyjmuje się, że wartość IR powinna znajdować się w przedziale pomiędzy 80 a 125%, natomiast dokładny zakres oblicza się w zależności od specyficznych danych konkretnej instalacji PV. Optymalna wartość zależy głównie od lokalizacji, rodzaju i orientacji modułów fotowoltaicznych oraz sposobu ich połączenia z falownikiem.

Dlaczego jednak zalecaną przez projektantów wartością jest górna granica, tj. gdy moc modułów jest np. o 25% większa od mocy nominalnej falownika? Takie podejście na pierwszy rzut oka kłóci się z zasadą, w której układy przetwarzające energię z generatorów projektuje się powyżej ich mocy nominalnej, czyli wypadałoby mieć IR < 100%?

Instalacje fotowoltaiczne projektuje się zupełnie inaczej. Jeśli w szerokości geograficznej Polski moduły PV wytwarzają energię z mocą nominalną zaledwie przez kilkanaście, kilkadziesiąt godzin w roku, to w pozostałych okresach osiągana przez nie moc jest znacznie niższa. Jeśli zatem moc modułów będzie równa mocy falownika, to większą część czasu nie będzie on pracował z mocą nominalną, lecz mniejszą. To bezpośrednio przekłada się na uzyskiwane sprawności konwersji. Efekt ten będzie jeszcze lepiej widoczny, gdy moc modułów będzie mniejsza niż moc nominalna falownika (IR < 100%).

Rys. 1. Wykres sprawności falownika zależny od mocy i napięcia wejściowego. Źródło: Fronius

Co się jednak stanie, gdy moc modułów będzie większa niż moc nominalna falownika, a warunki pogodowe będą sprzyjać generacji energii? Falownik nie będzie przetwarzał więcej energii niż wynosi jego moc maksymalna, a jej nadmiar nie będzie odbierany z modułów (nastąpi ograniczenie mocy wyjściowej). Statystycznie jednak korzystniejsze jest optymalne wytwarzanie energii przez większą część roku, niż ograniczenia w przetwarzaniu energii w pojedyncze dni, a nawet godziny.

Dlaczego warto przewymiarować DC względem AC

Zalety stosowania falowników o mocy nominalnej mniejszej niż moc modułów (IR > 100%):

  1. w normalnych warunkach bardzo rzadko uzyskujemy tzw. STC (ang. Standard Test Conditions – Standardowe Warunki Badania), czyli natężenie promieniowania 1000W/m², temperatura ogniw: 25°C, optyczna gęstość atmosfery AM = 1.5. Takie parametry łącznie osiągamy przez kilka-kilkanaście godzin w roku. W pozostałym okresie czasu parametry produkcji są znacznie gorsze: albo niższe wartości natężenia promieniowania, albo wyższa temperatura ogniw. A zatem falownik dobrany 1:1 do instalacji (IR = 100%) byłby permanentnie niedociążony;
  2. moduły fotowoltaiczne degradują się w czasie. Najwięcej na wydajności tracą w pierwszym roku, potem poniżej 1% rocznie. To oznacza, że nasza instalacja po 10 latach będzie miała moc nominalną o co najmniej 10% mniejszą. Zatem współczynnik mocy falownika do mocy modułów (IR) będzie malał w czasie;
  3. sprawność falownika zawsze będzie niższa, niż 100%;
  4. w miesiącach letnich wysoka temperatura modułów (nagrzewają się nawet 30-35°C powyżej temperatury otoczenia) przekłada się na ich mniejszą wydajność. Jeśli ujemny temperaturowy współczynnik mocy wynosi -0.45%/°C, to przy temperaturze modułów 65°C ich wydajność będzie mniejsza o:

(65°C – 25°C) • -0.45%/°C = 40°C • -0.45%/°C = -18% 

Obliczenia

Dokonując obliczenia każdego wariantu doboru różnej ilości modułów PV do falownika tej samej mocy, największe uzyski energii otrzymamy dla największej liczby modułów (por. tabela 1 poniżej). Nie mniej istotny jest aspekt finansowy. W każdym z wariantów falownik stanowi identyczny koszt, co powoduje, że wariant IR > 100% jest po prostu najbardziej ekonomicznie uzasadniony.

Tabela 1. Porównanie różnych wariantów doboru modułów do falownika*

Wariant

IR < 100%

IR = 100%

IR > 100%

 
Falownik 3.0kW Niedociążony Nominalnie Przeciążony np. Symo 3.0-3-S
Liczba modułów

9

11

13

 
Moc nominalna 1 modułu

280

280

280

[Wp]
Moc maks. modułów PV po stronie DC

2,52

3,08

3,64

[kWp]
Moc maks. falowika po stronie AC

3,0

3,0

3,0

[kVA]
IR

82%

100%

119%

 
Współczynnik strat związanych z niedopasowaniem

0%

0%

0,3%

 
Roczne uzyski energii (szacunkowo)

2 567

3 167

3 759

[kWh]
Uzyski energii z mocy DC

1 018,9

1 028,2

1 032,8

[kWh/kWp]
 Finanse        
Koszt modułów

7 200  

8 800  

10 400  

PLN
Koszt konstrukcji i montażu  

1 800  

2 200  

2 600  

PLN
Koszt falownika

4 000  

4 000  

4 000  

PLN
Łącznie

13 000  

15 000  

17 000  

PLN
Koszt za instalację 1 kWp (DC)

5 158  

4 870  

4 670  

PLN/kWp
Koszt pozyskania 1 kWh w 1 roku

0,506  

0,474  

0,452  

PLN

* wszystkie ceny przykładowe

 

Przewymiarowanie falowników Fronius

Falowniki Fronius charakteryzują się bardzo szerokim zakresem napięć i wysoką wartością prądów wejściowych, dzięki czemu oferują wyjątkową elastyczność przy projektowaniu instalacji. technologia ta nazywa się SuperFlex Design. Dość powiedzieć, że falowniki rodziny SYMO o zakresie mocy do 8.2kWAC oferują przewymiarowanie aż o 100%! W tej kategorii falowniki Fronius nie mają konkurencji.

Zalecane przewymiarowanie dla warunków polskich to 110%-120%. W przypadku instalacji Wschód-Zachód może być większe, nawet: 130-150%. A zatem: dla falownika Fronius SYMO 6.0-3-M jak najbardziej możliwe jest przyłączenie instalacji PV o mocy 12kWp, pod warunkiem spełnienia niżej opisanych wymagań dotyczących maksymalnych wartości napięć i prądów.

Z praktycznego punktu widzenia możliwość tak dużego przewymiarowania pozwala na obciążenie pojedynczego MPPT całą mocą nominalną falownika. Daje to wyjątkową łatwość realizacji instalacji, w której mamy połać główną (np. 80% mocy modułów) i połać dodatkową (pozostałe 20%). Bez problemu zrealizujemy również instalacje w układzie Wschód-Zachód. Więcej na ten temat w artykule Fronius SuperFlex Design.

 

Przewymiarowanie FRONIUS SYMO 3.0-3-S – 8.2-3-M

Firma Fronius niniejszym potwierdza, że falowniki

/           Fronius Symo 3.0-3-M up to Fronius Symo 8.2-3-M
/           Fronius Symo 3.0-3-S up to Fronius Symo 4.5-3-S

mogą być przewymiarowane po stronie DC o 100% mocy znamionowej bez anulowania gwarancji producenta,
pod warunkiem, że:

/           konfiguracja łańcuchów przestrzega wytycznych dotyczących napięcia i prądu opublikowanych w instrukcji obsługi
/           napięcie obwodu otwartego z generatora fotowoltaicznego nie przekracza maksymalnego napięcia wejściowego falownika dla wszystkich warunków (temperatura, natężenie promieniowania)
/           maksymalny prąd zwarcia na wejściu DC nie może przekraczać 1,5x wartości maksymalnego prądu wejściowego DC falownika (ograniczenie rozłącznika DC)

Przewymiarowanie FRONIUS SYMO 10.0-3-M – 20.0-3-M

Firma Fronius niniejszym potwierdza, że falowniki

/           Fronius Symo 10.0-3-M do Fronius Symo 20.0-3-M

mogą być przewymiarowane po stronie DC o 50% mocy znamionowej bez anulowania gwarancji producenta,pod warunkiem, że:

/           konfiguracja łańcuchów przestrzega wytycznych dotyczących napięcia i prądu opublikowanych w instrukcji obsługi
/           napięcie obwodu otwartego z generatora fotowoltaicznego nie przekracza maksymalnego napięcia wejściowego falownika dla wszystkich warunków (temperatura, natężenie promieniowania)
/           maksymalny prąd zwarcia na wejściu DC nie może przekraczać 1,5x maksymalny prąd wejściowy DC falownika (ograniczenie rozłącznika DC)

Przewymiarowanie FRONIUS ECO 25.0-3-S – 27.0-3-S

Firma Fronius niniejszym potwierdza, że falowniki

/           Fronius ECO 25.0-3-S i Fronius ECO 27.0-3-S

mogą być przewymiarowane po stronie DC do 37.8kWpeak mocy znamionowej bez anulowania gwarancji producenta,pod warunkiem, że:

/           konfiguracja łańcuchów przestrzega wytycznych dotyczących napięcia i prądu opublikowanych w instrukcji obsługi
/           napięcie obwodu otwartego z generatora fotowoltaicznego nie przekracza maksymalnego napięcia wejściowego falownika dla wszystkich warunków (temperatura, natężenie promieniowania)
/           maksymalny prąd zwarcia na wejściu DC nie może przekraczać 71,6A

Przewymiarowanie FRONIUS PRIMO 3.0-1 do 8.2-1

Firma Fronius niniejszym potwierdza, że falowniki

/           Fronius Primo 3.0-1 do Fronius Primo 8.2-1

mogą być przewymiarowane po stronie DC o 50% mocy znamionowej bez anulowania gwarancji producenta,pod warunkiem, że:

/           konfiguracja łańcuchów przestrzega wytycznych dotyczących napięcia i prądu opublikowanych w instrukcji obsługi
/           napięcie obwodu otwartego z generatora fotowoltaicznego nie przekracza maksymalnego napięcia wejściowego falownika dla wszystkich warunków (temperatura, natężenie promieniowania)
/           maksymalny prąd zwarcia na wejściu DC nie może przekraczać 1,5x maksymalny prąd wejściowy DC falownika (ograniczenie rozłącznika DC)

>Przewymiarowanie FRONIUS GALVO

Firma Fronius niniejszym potwierdza, że falowniki

/           Fronius Galvo

mogą być przewymiarowane po stronie DC o 100% mocy znamionowej bez anulowania gwarancji producenta,pod warunkiem, że:

/           konfiguracja łańcuchów przestrzega wytycznych dotyczących napięcia i prądu opublikowanych w instrukcji obsługi
/           napięcie obwodu otwartego z generatora fotowoltaicznego nie przekracza maksymalnego napięcia wejściowego falownika dla wszystkich warunków (temperatura, natężenie promieniowania)
/           maksymalny prąd zwarcia na wejściu DC nie może przekraczać 1,5x maksymalny prąd wejściowy DC falownika (ograniczenie rozłącznika DC)

Rodzaje sieci (TN-C, TN-S, TN-C-S, IT) a falowniki Fronius

Rodzaje sieci (TN-C, TN-S, TN-C-S, IT) a falowniki Fronius

Często pojawia się pytanie, czy w danym układzie sieci (TN-C, TN-S, TN-C-S, TT, IT) można instalować trójfazowe falowniki fotowoltaiczne. Niniejszy artykuł charakteryzuje rodzaje układów sieciowych i podpowiada, czy nadają się do podłączenia falowników, a jeśli tak, to na jakich warunkach.

Niniejszy wpis powstał na bazie artykułu Wikipedii “Układy sieciowe“, który jest dostępny pod tym linkiem na licencji CC BY-SA 3.0, i również na tej licencji może być upowszechniany. 

Oznaczenia na schematach

  • L1L2L3 (line) – przewody fazowe,
  • N (neutral) – przewód neutralny,
  • PE (protection earth) – przewód ochronny,
  • PEN – przewód ochronno-neutralny,
  • Odbiornik – w naszym przypadku będzie to urządzenie wytwórcze, czyli falownik.

Typy sieci

Sieć trójfazowa Opis Czy można zastosować falownik Fronius?
TN-S
Dla sieci niskiego napięcia (do 1 kV) wyróżnia się układy:

  • TN – mający jeden punkt bezpośrednio uziemiony, a części przewodzące dostępne (np. metalowe obudowy odbiorników) przyłączone są do tego punktu za pomocą przewodów ochronnych. W zależności od związku przewodu neutralnego z przewodem ochronnym wyróżnia się układy:
    • TN-S – z oddzielnym przewodem ochronnym PE w całym układzie sieci. Przewód ten służy wyłącznie do ochrony urządzeń, nie można włączać go w jakikolwiek obwód prądowy, służy do tego oddzielny przewód neutralny N.
TN-C

  • TN-C – w którym w całym układzie sieci funkcje przewodu ochronnego PE, jak i funkcje przewodu neutralnego N pełni jeden wspólny przewód ochronno-neutralny PEN.

W przypadku przerwy w ciągłości przewodu może powstać znaczne zagrożenie porażeniowe. Z tego względu sieci TN-C mogą być stosowane tylko przy ułożeniu przewodów na stałe, a przekrój przewodów PEN nie powinien być mniejszy niż 10 mm² Cu lub 16 mm² Al. Sieci typu TN-C nie mogą być stosowane wówczas, gdy przekrój przewodów jest mniejszy od wartości podanych oraz w instalacjach odbiorników ręcznych i przenośnych. W tym przypadku dopuszczalne jest jedynie wykonanie sieci i instalacji o układzie TN-S lub TN-C-S.

TN-C-S

  • TN-C-S – w którym tylko w części układu sieci funkcję przewodu neutralnego N oraz funkcję przewodu ochronnego PE pełni jeden wspólny przewód PEN.
TT i IT

  • TT – mający jeden punkt bezpośrednio uziemiony, a części przewodzące dostępne są przyłączone do uziomu ochronnego niezależnego elektrycznie od uziemienia sieci. Wyróżnia się uziemienia indywidualne, grupowe oraz zespołowe.
  • IT (układ izolowany) – w którym wszystkie części czynne są odizolowane od ziemi lub jeden punkt przyłączony jest do ziemi poprzez impedancję, a części przewodzące dostępne są uziemione niezależnie od siebie (albo wspólnie), lub przyłączone są do uziemienia sieci.
Jak połączyć falownik Fronius z Fibaro Home Center 2

Jak połączyć falownik Fronius z Fibaro Home Center 2

Poniższy artykuł przedstawia szczegółowy opis metody połączenia elektrowni fotowoltaicznej bazującej na falownikach Fronius oraz instalacji inteligentnego domu bazującej na centrali Fibaro Home Center 2. Zamieszczono również przykładowy kod skryptu w języku Lua.
Aby zrozumieć korzyści płynących z tego połączenia należy uprzednio zapoznać się z wpisem wyjaśniającym podstawy fotowoltaiki: “Podstawy fotowoltaiki w pigułce”
 

Zobaczyć znaczy zrozumieć

Wszystkie falowniki Fronius nowej generacji SnapINverter (rodziny Fronius SYMO, PRIMO, GALVO, ECO) standardowo wyposażane są w nowoczesną kartę Datamanager 2.0. Karta ta umożliwia proste w obsłudze i wizualnie atrakcyjne monitorowanie działania instalacji fotowoltaicznej na portalu Solar.Web (http://www.solarweb.com) należącym do firmy Fronius. Użytkownik uzyskuje wgląd we wszystkie najważniejsze parametry instalacji, przede wszystkim w aktualnie oddawaną przez falownik moc oraz wykresy prezentujące ilości wyprodukowanej energii. Obserwując wyłącznie pracę falownika lub falowników nie wiemy jednak, co się dalej z tą energią dzieje. Łącząc te dane z systemem inteligentnego domu, otwierają się zupełnie nowe, znacznie bardziej interesujące możliwości: właściciel instalacji PV może obserwować bilans energii w budynku (zarówno produkcję i zużycie energii), a w kolejnym kroku – także nadzorować wykorzystanie energii produkowanej.

Optymalizacja zużycia produkowanej energii na własne potrzeby

Oddawanie do sieci niewykorzystanej energii wiąże się z wymiernymi stratami finansowymi. W przypadku mikronstalacji, dzięki wprowadzonemu net-meteringowi możemy „odzyskać” tylko 80% (do mocy 10kW) lub 70% (do mocy 40kW) oddanej energii wraz z kosztem jej dystrybucji. A stopień samowystarczalności (opisany powyżej) to zaledwie 25-30%.

Wprowadzając inteligentne włączanie niektórych urządzeń w godzinach największej produkcji energii ze słońca, możemy uzyskać poprawę takiego stanu, a stopień samowystarczalności podnieść nawet do 50%. Dlatego współpraca pomiędzy firmą Fibar Group a firmą Fronius przynosi zupełnie nowe rozwiązania w dziedzinie optymalizacji zużycia produkowanej energii na potrzeby własne.

H:\TechSupport\Solar\07 partners\Fibaro\rys_01b.png

Rys. 1. Idea zarządzana zużyciem energii w budynku jednorodzinnym w celu zwiększenia stopnia wykorzystania produkowanej energii.

Coraz ważniejszym tematem staje się wytwarzanie ciepła, także pod względem możliwości jego włączenia w zarządzanie energią. W nowoczesnych zbiornikach ciepłej wody użytkowej w zasadzie nie jest istotny moment pozyskania energii wykorzystanej do podgrzewania wody – potrafią one utrzymywać uzyskaną temperaturę przez kilkadziesiąt godzin. Podobnie w przypadku energooszczędnych, dobrze izolowanych budynków, załączenie pompy ciepła do ogrzewania lub chłodzenia pomieszczeń może być przesunięte w czasie. Urządzenia te idealnie zatem nadają się do sterowania, a co za tym idzie – inteligentnego magazynowania wytwarzanej energii w postaci ciepła (lub chłodu).

Zastosowanie Fibaro

Odpowiednio zaprogramowane urządzenia wykonawcze w systemie Fibaro pozwalają na załączanie i wyłączanie dowolnych odbiorników energii (np. poprzez przekaźnik FGS-2×1 lub FGS-2×3, a w przypadku większych mocy w instalacji trójfazowej – dodatkowy stycznik). Najprostszy algorytm może wykorzystywać w tym celu wartość aktualnie wytwarzanej w instalacji PV mocy. Poprzez odpowiednio ustawione wartości załączenia i wyłączenia następuje sterowanie podłączonym odbiornikiem.

System Fibaro może dawać jednak znacznie więcej możliwości. Mając dokładną wiedzę o aktualnym bilansie energii elektrycznej w budynku, można z łatwością zaprogramować załączenie urządzeń na bazie wartości mocy oddawanej do sieci oraz ich wyłączenie – w przypadku gdy energia z sieci jest pobierana.

Ale możliwości kontroli i regulacji jest więcej. W przypadku pomp ciepła bardzo ważne jest, aby kompresor po załączeniu pracował przez określony, minimalny czas. Taki parametr możliwy jest do ustawienia w przypadku wykorzystania skryptów LUA, a nawet zwykłych scen.

Można również, jako priorytet wybrać przygotowanie c.w.u. nie później, niż do określonej godziny, np. 18:00, gdy domownicy wracają po pracy. Fibaro będzie sterował grzałką c.w.u. w zależności od dostępnego nadmiaru produkowanej energii, a jeśli będzie on w pochmurne dni niewystarczający – załączy podgrzewanie wody z odpowiednim czasowym wyprzedzeniem.

Monitorowanie pracy instalacji PV i podejmowanie różnorodnych akcji na bazie np. aktualnie uzyskiwanej mocy, czy tez możliwość sterowania pracą instalacji PV daje projektantom instalacji inteligentnego budynku nieograniczone pole możliwości.

Połączenie Fibaro i Fronius – zagadnienia techniczne

Fronius Datamanager 2.0

Standardowo każdy falownik nowej generacji SnapINverter (Fronius SYMO, GALVO, ECO i PRIMO) wyposażany jest w zaawansowaną kartę Datamanager 2.0. Oprócz podstawowej funkcji, jaką jest przesyłanie danych na portal Solar.Web (http://www.solarweb.com) karta ta posiada wiele interfejsów, które mogą z łatwością zostać wykorzystane do integracji instalacji fotowoltaicznej z systemem inteligentnego budynku. Są to m.in.:

  • interfejs JSON
  • Modbus RTU (via RS-485) oraz Modbus TCP (via Ethernet)
  • Push FTP / HTTP POST

Szczególnie ten pierwszy interfejs wydaje się być idealny do połączenia z systemem Fibaro. Prosty skrypt w języku LUA umożliwi odczyt bieżącej wartości mocy czy też ilości wyprodukowanej energii. Te dwie liczby na początkowym etapie w zupełności wystarczą do zaspokojenia podstawowych potrzeb użytkowników takich połączonych instalacji:

  • wizualizacji
  • sterowania odbiornikami energii

Fibaro HC2 / HCL

Najwygodniejszą formą połączenia interfejsu Fronius z Fibaro byłoby wykorzystanie mechanizmu plug-inów, który daje łatwość instalacji i kompatybilność z HC2 oraz HCL.

Niestety, w obecnej wersji Fibaro nie jest możliwe tworzenie własnych plug-inów, ani pobieranie danych ze „zwykłych” plug-inów, które mogłyby służyć do sterowania, np. do wyzwalania scen opartych o bloki. Wyjątkiem jest plug-in pogodowy (YR i/lub Yahoo Weather), który zarówno zintegrowany jest z pulpitem, jak i stanowi osobną sekcję wśród wyzwalaczy.

Rozwiązaniem alternatywnym mogą być urządzenia wirtualne (VD), w których może zostać umieszczony odpowiedni skrypt w języku LUA. Takie rozwiązanie niestety wyklucza możliwość użycia centrali Home Center Lite (HCL), ale jest akceptowalne, ze względu na duży stopień wykorzystania Home Center 2 (HC2) w instalacjach.

Inteligentne liczniki Z-Wave

Docelowo w instalacji inteligentnego domu należy przewidzieć zastosowanie licznika energii Z-wave, który zainstalowany na styku budynku i OSD (np. szeregowo z licznikiem OSD) dokonywałby pomiarów zużycia energii we wszystkich fazach dla całego budynku. Aktualnie istnieją takie rozwiązania, np. licznik Aeon Labs HEM Gen 5. Licznik ten w wersji 3-fazowej posiada 3 przekładniki prądowe do założenia na przewodach w celu pomiaru prądu oraz 4 przewody do pomiaru napięć. Dokładność pomiaru jest wystarczająca na potrzeby wizualizacji i/lub sterowania. Licznik ten umożliwia pomiar dwukierunkowy, tzn. zarówno energii pobieranej z sieci (ze znakiem „+”), jak i energii oddawanej do sieci (ze znakiem „–”)

Więcej na temat licznika: http://aeotec.com/z-wave-home-energy-measure

W systemie Fibaro nie ma aktualnie możliwości ustawienia poziomów / priorytetów w urządzeniach mierzących zużycie energii elektrycznej. To znaczy, że pomiar dokonany przez WallPlug zostanie dodany do pomiaru dokonanego przez licznik energii pobieranej przez cały budynek.

Dodatkowym problemem jest prezentacja/wizualizacja ujemnych wartości energii, symbolizujących nadwyżkę produkowanej energii oddawanej do sieci. Taka opcja nie jest na chwilę zaimplementowana w systemie Fibaro.

Inteligentne liczniki Fronius Smart Meter

Alternatywnie, dane dotyczące oddawanej i pobieranej energii do/z sieci elektroenergetycznej OSD mogą być pobierane (również w skrypcie LUA) z licznika inteligentnego Fronius Smart Meter poprzez interfejs JSON Datamanagera. Ograniczone możliwości wizualizacji w panelu energii Fibaro mogą być zastąpione przez zaawansowany interfejs graficzny portalu Solar.Web, pozwalający na zaawansowaną analizę produkcji oraz zużycia energii, w tym bilans energetyczny.

KONCEPCJA POŁĄCZENIA

Możliwość integracji pomiędzy automatyką budynkową Fibaro, a instalacją PV bazującą na falownikach Fronius jest niezwykle łatwa do uzyskania.

Od strony falownika można tego dokonać poprzez protokół JSON (ang. Java Script Object Notation), standardowo dostępny w urządzeniu Fronius Datamanager 2.0. Firma Fronius udostępnia obszernie udokumentowane API (link do pliku), które daje możliwość odczytania praktycznie wszystkich kluczowych danych instalacji PV, począwszy od parametrów pracy falowników (w tym najważniejszych: aktualnej mocy i oddanej energii), ale również danych ze stacji pogodowej, przepływów energii przez inteligentny licznik Fronius Smart Meter, czy też magazynu energii Fronius Solar Battery.

Przykładowe kody umożliwiające odczyt danych dotyczących całego systemu, poszczególnych urządzeń oraz przepływów energii w układzie.

http://<IPAddress:TCPPort>/solar_api/GetAPIVersion.cgi
http://<IPAddress:TCPPort>/solar_api/v1/GetActiveDeviceInfo.cgi?DeviceClass=System
http://<IPAddress:TCPPort>/solar_api/v1/GetInverterRealtimeData.cgi?Scope=System
http://<IPAddress:TCPPort>/solar_api/v1/GetInverterRealtimeData.cgi?Scope=Device&DeviceId=1&DataCollection=CommonInverterData
http://<IPAddress:TCPPort>/solar_api/v1/GetPowerFlowRealtimeData.fcgi

Gdzie: <IPAddress:TCPPort> to adres IP (zaleca się nadawanie adresu statycznego!) oraz port (standardowo: 80) karty Datamanager 2.0 w sieci wewnętrznej.

Jako przykład została wybrana funkcja „GetPowerFlowRealtimeData”, która w jednym zapytaniu umożliwia odczyt najważniejszych danych dla całego systemu:

http://<IPAddress:TCPPort>/solar_api/v1/GetPowerFlowRealtimeData.fcgi

Przykład danych uzyskanych powyższym zapytaniem zamieszczono w tabeli 2 poniżej:

String JS Eval
{
"Head" : {
"RequestArguments" : {},
"Status" : {
"Code" : 0,
"Reason" : "",
"UserMessage" : ""
},
"Timestamp" : "2017-03-12T08:53:31+01:00"
},
"Body" : {
"Data" : {
"Site" : {
"Mode" : "produce-only",
"P_Grid" : null,
"P_Load" : null,
"P_Akku" : null,
"P_PV" : 14174,
"E_Day" : 27021.800476,
"E_Year" : 27062257.75,
"E_Total" : 289067759.125
},
"Inverters" : {
"1" : {
"DT" : 121,
"P" : 1032
},

 

Graficzna reprezentacja powyższych danych może wyglądać następująco:

H:\TechSupport\Solar\07 partners\Fibaro\rys_03d.png

Rys. 2. Graficzna reprezentacja danych z zapytania JSON

W Fibaro Home Center 2 należy stworzyć tzw. urządzanie wirtualne (ang. Virtual Device, VD) z krótkim kodem w języku skryptów „Lua”.

Podstawą skryptu jest funkcja json.decode(), która w formie zagnieżdżonych tablic asocjacyjnych daje dostęp do wszystkich przekazanych wartości:

fronius =
{ { „Head”, <tablica_Head> },
{ „Body”, <tablica_Body> } }

Przykładowo, wartość mocy wytwarzanej w instalacji PV („P_PV”):

fronius Body Data Site P_PV

może zostać odczytana w skrypcie w następujący sposób:

P_PV = fronius[“Body”].Data.Site.P_PV

lub

P_PV = fronius.Body.Data.Site.P_PV

Do poprawnego działania skryptu konieczne jest zdefiniowanie w VD następujących etykiet („Label”):

load
pv
grid
eday

Zaznaczenie „Label” jako „Main” spowoduje wyświetlanie wartości w oknie głównym.

Natomiast, aby używać danych w scenach, należy je zapisać do uprzednio zdefiniowanych zmiennych globalnych w panelu „Variables”. Przykładowo:

-- set the global variables
fibaro:setGlobal ('PV_plant_load', P_Load)
fibaro:setGlobal ('PV_plant_grid', P_Grid)
fibaro:setGlobal ('PV_plant_pv', P_PV)
fibaro:setGlobal ('PV_plant_eday', E_Day)

Przykładowy kod skryptu do Virtual Device

Do pobrania po akceptacji regulaminu. Wyłącznie dla zarejestrowanych użytkowników!

Podsumowanie

Kod napisany jest w taki sposób, aby adres IP Datamanagera w sieci lokalnej oraz port (standardowo 80) był podawany w panelu kontrolnym Virtual Device. W przypadku zaimportowania VD do centrali HC2 są to jedyne dane, które powinny zostać skonfigurowane (poza definicją zmiennych globalnych), co ułatwia proces instalacji.

H:\TechSupport\Solar\07 partners\Fibaro\PV_plant_VD_General — krótki.png

Rys. 3. Panel konfiguracyjny Virtual Device z polami na adres IP oraz port, pod którym dostępny jest Datamanager 2.0

Niestety, w chwili obecnej wykorzystanie podstawowej funkcjonalności i stworzenie odpowiednich powiązań wymaga od firmy instalacyjnej umiejętności pisania kodu w języku „Lua”, dla instalatorów systemów automatyki domowej nie powinna być to jednak przeszkoda.

Niemniej jednak, wykorzystanie bardziej zaawansowanych funkcji, takich jak umieszczenie źródła energii w „Energy Panel” będzie wymagało stworzenia dedykowanego plug-inu.

Przykład wizualizacji urządzenia wirtualnego zbierającego dane z elektrowni fotowoltaicznej przedstawiono na rysunkach od 4 do 6:

H:\TechSupport\Solar\07 partners\Fibaro\proof-of-concept_HC2_v1.png

Rys. 4. Przykład wizualizacji danych pobieranych z elektrowni PV

H:\TechSupport\Solar\07 partners\Fibaro\proof-of-concept_HC2_v3.png

Rys. 5. Dane dostępne w urządzeniu wirtualnym (VD)

H:\TechSupport\Solar\07 partners\Fibaro\PV_plant_VD_Variables.png

Rys. 6. Dane pochodzące z elektrowni dostępne jako zmienne globalne

Powiązanie danych pochodzących z instalacji PV (poprzez zmienne globalne) ze sterowaniem najprostszym urządzeniem jakim jest Fibaro Wall Plug daje nam nieograniczone możliwości zaprogramowania „scen”: alarmy, progi zadziałania, zależności czasowe, monitorowanie, zaawansowana analiza produkcji i zużycia energii oraz bazujące na tych informacjach inteligentne sterowanie odbiornikami energii. Nic nie stoi na przeszkodzie, aby odpowiednio sterować również bardziej zaawansowane urządzenia, choćby ściemniacze (ang. dimmer) czy kontrolery LED RGBW, których w sieci Z-Wave może być nawet 232.

ZAŁĄCZNIKI





Kilka liczników Fronius Smart Meter w jednej instalacji

Kilka liczników Fronius Smart Meter w jednej instalacji

Właśnie została dodana długo oczekiwana funkcjonalność podłączenia kilku liczników Fronius Smart Meter do jednego Datamanagera. Daje to bardzo ciekawe możliwości analizy profilu produkcji i zużycia energii z wyszczególnieniem najważniejszych z nich (np. pompy ciepła, bojlera., itp.). Przykładowo, jeśli włączymy dodatkowy licznik do toru zasilania bojlera:

Na portalu Solar.Web uzyskamy precyzyjną informację o zużywanej energii:

Do poprawnej pracy należy skonfigurować odpowiednio liczniki (nadać im różne adresy Modbus). Jest już polska instrukcja wyjaśniająca, jak to zrobić. Dla zarejestrowanych użytkowników forum do pobrania tutaj:

Natomiast w interfejsie webowym Datamanagera definiujemy, czy dany licznik odpowiada za odbiornik energii (grzałka c.w.u., pompa ciepła), czy za dodatkowy generator (falownik innego producenta, wiatrak). Konfiguracja jest niezwykle prosta, wybieramy licznik pierwotny, a następnie dodajemy liczniki wtórne:

W instalacji musi być jeden licznik główny – zainstalowany na styku budynku i OSD. Zawsze z adresem 1.
Dodatkowych liczników może być trzy:

Jak widać ze schematu powyżej nowa funkcjonalność daje również możliwość monitorowania innych urządzeń wytwórczych, np. falownika od wiatraka lub falownika PV innego producenta.

W jednej instalacji można mieszać różne typy liczników:

  • Fronius Smart Meter 63A-3
  • Fronius Smart Meter 50kA-3
  • Fronius Smart Meter 63A-1 (np. do jednofazowych pomp ciepła)
  • a także licznik S0 podłączony do wejścia falownika

Na koniec schemat elektryczny. Proszę pamiętać, że połączenia magistrali RS-485 wykonujemy skrętką, najlepiej ekranowaną (np. Li2YCY), a na początku i na końcu linii umieszczamy rezystor terminujący 120Ω. Aby aktywować rezystor terminujący w Datamanagerze, DIP-switch koło anteny WiFi należy ustawić na ON (tak jest ustawiony fabrycznie).

Kolejność podłączania liczników na magistrali RS-485 (Modbus RTU) nie ma  znaczenia. 

10 narzędzi przydatnych instalatorom PV

10 narzędzi przydatnych instalatorom PV

Przed przystąpieniem do technicznej realizacji projektu z obszaru fotowoltaiki warto zastanowić się, jakie narzędzia będą przydatne do projektowania, diagnostyki czy konfiguracji parametrów. Poniżej zestawienie 10 15 najbardziej przydatnych narzędzi, które mogą ułatwić pracę instalatorom PV.

0. Forum Instalatorów Falowników Fronius

No właśnie…, ale przecież tu jesteśmy!
Warto zapisać w ulubionych zakładkach w przeglądarce:
http://www.fiff.pl

Forum to także blog, na którym publikowane są ciekawe artykuły, informacje techniczne i podpowiedzi. To także dostęp do Webinariów i repozytorium najbardziej potrzebnych plików. Jak korzystać z FIFF można przeczytać tutaj.

1. Strona Fronius Polska / Solar Energy

www.fronius.pl

2. Portal monitorowania Solar.Web

www.solarweb.com

3. Solar.Configurator 4.0

solarconfigurator.solarweb.com

4. Solar Online Support

Tylko dla Partnerów Serwisowych Fronius: sos.fronius.com

5. Fronius Datalogger Finder

To oprogramowanie wykorzystywane jest do wyszukiwania aktywnych kart Datamanager w lokalnej sieci komputerowej. Co ważne, program jest darmowy i dostępny na stronie producenta.

Opis postępowania:

  • Pobierz oprogramowanie „Fronius Datalogger Finder” z tego adresu Fronius Software Download i zainstaluj je na komputerze.
  • Po zakończeniu instalacji uruchom oprogramowanie „Fronius Datalogger Finder”.
    Oprogramowanie wyszuka karty monitorowania instalacji Fronius dostępne w twojej sieci (LAN/WLAN) i rozpocznie ich nasłuchiwanie.
  • Wybierz moduł monitorowania instalacji Fronius, z którym chcesz się połączyć.
    Nastąpi automatyczne otwarcie okna przeglądarki i połączenie z interfejsem web modułu monitorowania instalacji Fronius.

6. Advanced Port Scanner

Narzędzie podobne do Datalogger Finder, ale pozwalające wyszukać wszystkie urządzenia w lokalnej sieci WLAN/LAN. Licencja bezpłatna, do pobrania tutaj.

7. Cmd.exe – okno konsoli systemu Windows

W oknie dokonywana jest interpretacja wprowadzanych w wierszu poleceń. Przykładem zastosowania okna konsoli dla automatyka jest proste sprawdzenie połączenia sieciowego w sieci ETHERNET. Żeby sprawdzić, czy jest możliwość połączenia pomiędzy komputerem PC a kartą Datamanager, należy w wierszu poleceń wpisać „ping”, a po spacji adres IP karty (przykładowo ping 169.254.0.180). Następnie wciskamy „Enter” na klawiaturze i otrzymujemy szczegółowe wyniki.

8. TeamViewer

Bezpłatny program służący do zdalnego dostępu do komputera i jego kontroli (może to być komputer PC, Linux, Mac).

Cechy:

  • darmowe rozwiązanie dla zastosowania prywatnego
  • przydatny w administracji, wsparciu technicznym, edukacji itd.

Aplikację TeamViewer można bezpłatnie pobrać na stronie www.TeamViewer.com

Instrukcja, jak się łączyć z serwisem technicznym Fronius znajduje się tutaj.

9. PV-GIS Simulator

Jak oszacować ilość energii, którą możemy wyprodukować z instalacji PV?
Warto korzystać z darmowych narzędzi, takich jak baza PV-GIS (http://re.jrc.ec.europa.eu/pvg_tools/en/tools.html) można łatwo oszacować ilość produkowanej rocznie energii, w zależności od lokalizacji, kąta nachylenia modułów, czy też azymutu pola modułów PV. Przykładowo, elektrownia 5kWp zlokalizowana w Małopolsce wyprodukuje 5420kWh energii elektrycznej, a wartości są szacowane dla każdego miesiąca indywidualnie (rys. poniżej).
Mimo, że narzędzie jest bezpłatne, oferuje wyniki, które są bardzo zbliżone do pomiarów rzeczywistych w zrealizowanych inwestycjach.

10. Radzio! Modbus Master Simulator

To oprogramowanie jest napisane do testowania urządzeń Modbus Slave połączonych zarówno magistralą szeregową RS-485 (RTU) jak i Ethernetu (TCP). Radzio! jest prostym w użyciu i bezpłatnym programem pozwalającym na monitoring i symulację tych protokołów komunikacyjnych np używanych do połączenia z kartą Datamanager 2.0. Komputer działa wówczas jako Modbus Master, dzięki czemu w prosty sposób można symulować urządzenia pracujące w protokole Modbus.

Cechy:

  • działa m.in. z Modbus RTU oraz Modbus TCP
  • pracuje jako Modbus Master
  • możliwość wyświetlania oraz edycji Holding Registers, Coils, Input Registers oraz Input Statuses

Do pobrania ze strony http://en.radzio.dxp.pl/modbus-master-simulator/

11. Wkrętak dynamometryczny

Wkrętak dynamometryczny to podstawowe narzędzie w torbie każdego elektryka. Wszystkie aparaty elektryczne mają precyzyjnie określony moment dokręcający. Jeżeli dokręcimy zacisk za słabo – nie będzie prawidłowego kontaktu elektrycznego, jeżeli zakręcimy za mocno – możemy zniszczyć urządzenie.

Podobnie jak w przypadku każdej instalacji elektrycznej, prawidłowe dokręcenie zacisków śrubowych na wszystkich przyłączach DC i AC ma decydujące znaczenie dla utrzymania bezpiecznych i niezawodnych instalacji. Podobnie montaż i dokręcenie śrub obudowy (na przykład plastikowej pokrywy na dole falownika) również musi spełniać odpowiednie parametry momentu obrotowego, aby zapobiec mechanicznemu uszkodzeniu elementów i penetracji wody.
W żadnym wypadku nie wolno dokręcać śrub przy użyciu wkrętarki elektrycznej! Prowadzi to do uszkodzeń mechanicznych, które nie są objęte gwarancją. Dlatego nieprawidłowe lub niepewne połączenia mogą okazać się kosztowne dla wszystkich zainteresowanych stron: zarówno dla instalatora, jak i właściciela systemu solarnego.

Aby zapewnić spełnienie wymagań prawidłowego montażu, zaleca się instalatorom użycie narzędzi ograniczających moment obrotowy podczas instalowania falowników firmy Fronius.

Najlepiej wyposażyć się w zestaw z izolowaną rączką i kompletem bitów slim:


Właściwe narzędzia są niezbędne do utrzymania wysokiej jakości połączeń i bezpieczeństwa instalacji. Zamieszczamy link do przykładowych rozwiązań, które pasują do zaleceń wymienionych powyżej:
Wkrętaki dynamometryczne dla elektryków Wiha TorqueVario®-S VDE

12. Zaciskarka do złącz RJ45

Wykorzystywana przy wykonywaniu połączeń Solar.Net (DATCOM) pomiędzy falownikami Fronius oraz “zwykłych” połączeń Ethernet.
Najlepiej w komplecie z testerem przewodów.

13. Multimetr do pomiaru napięcia i prądu stałego

Multimetr musi mieć oczywiście mozliwość pomiaru napięć stałych do 1000V. Dobrym pomysłem jest miernik cęgowy, wówczas odpada potrzeba rozpinania przewodów solarnych.

Miernik musi posiadać zgodność z normami bezpieczeństwa: EN/IEC 61010-1:2001; 1000V CAT III, 600V CAT IV

Fluke_381 Fluke_374FC

Narzędzie wyboru przyrządów cęgowych firmy Fluke.

14. Kamera termowizyjna

Do kamer termowizyjnych chyba nikogo nie trzeba przekonywać. W instalacjach elektrycznych pozwala zidentyfikować słabe, czyli grzejące się punkty. W instalacjach fotowoltaicznych dodatkowo wykryje uszkodzone lub niesprawne moduły.
Ciekawym rozwiązaniem są przystawki kamer do smartfonów FLIR ONE trzeciej generacji oraz FLIR ONE Pro. To połączenie kamer termowizyjnych klasy podstawowej z urządzeniami iOS lub Android. Trzecia generacja FLIR ONE jest obecnie najbardziej przystępna cenowo, zaledwie € 249 (z VAT). Z kolei całkowicie nowa FLIR ONE Pro to najbardziej zaawansowana w historii kamera w formie przystawki do smartfonów. Urządzenie, dostępne za € 499 (z VAT), jest przeznaczone szczególnie dla profesjonalistów, korzystających w pracy z zalet termowizji. Dzięki zaawansowanym funkcjom przetwarzania obrazu: MSX i VividIR™, FLIR ONE Pro oferuje niezrównaną jakość i szczegółowość obrazów. Wśród funkcji profesjonalnych można wymienić pomiar wielopunktowy oraz raportowanie przy użyciu jednego przycisku, umożliwiające szybką interpretację i udostępnianie wyników. FLIR ONE Pro jest w pełni zintegrowana z aplikacją FLIR Tools w celu szczegółowej analizy danych. Urządzenie daje do ręki funkcje profesjonalnej kamery termowizyjnej pracownikom, którzy wymagają od swoich urządzeń mobilnych większych możliwości w zakresie termowizji.

15. Seaward PV150 lub Seaward PV200

Zmierz VOC, IOC, izolację, uziemienie, natężenie napromienienia i temperaturę*, aby udowodnić bezpieczeństwo i wydajność modułów i łańcuchów PV za jednym naciśnięciem przycisku.
Więcej szczegółów w prezentacji:

Nowe wymagania OSD względem falowników PV

Nowe wymagania OSD względem falowników PV

Szanowni Państwo,

w ostatnich dniach świat instalatorów fotowoltaiki w Polsce obiegła wiadomość o zmianach w Instrukcjach Ruchu i Eksploatacji Sieci Dystrybucyjnej (IRiESD) u wszystkich pięciu Operatorów Systemów Dystrybucyjnych (link do notatki Globenergia). Dokumenty te w znaczący sposób zmieniają wymagania odnośnie instalowanych urządzeń, tj. falowników PV w mikroinstalacjach OZE. Planowana data wprowadzenia tych zmian to 1 kwietnia 2018r i nie jest to żart Prima-Aprilisowy.

Śpieszymy wyjaśnić, że wszystkie wymagania sprecyzowane w odpowiednich dokumentach opublikowanych na stronach OSD są spełniane przez falowniki firmy Fronius, a w szczególności:

Pn [kW] Pn ≤ 3 3 < Pn ≤ 10 10 < Pn ≤ 40 FRONIUS
Wymagania w zakresie zdalnego sterowania przez PGE Dystrybucja S.A.

Możliwość zdalnego odłączenia mikroinstalacji

Możliwość zdalnego sterowania mocą czynną

TAK
(wymagany Datamanager)

Automatyczna redukcja mocy czynnej przy f >50,2 Hz wg zadanej charakterystyki P(f) TAK TAK
Regulacja mocy biernej według zadanej

charakterystyki Q(U) i cos φ (P)

TAK TAK
Układ zabezpieczeń: komplet zabezpieczeń nad- i podnapięciowych, nad- i podczęstotliwościowych oraz od pracy wyspowej Zintegrowany z falownikiem TAK
Sposób przyłączenia 1-fazowo lub 3-fazowo 3-fazowo

TAK
(lista poniżej)

 

Lista falowników spełniających powyższe wymagania OSD:

Sposób przyłączenia Zgodne modele falowników
1-fazowo lub 3-fazowo
Pn < 3kW
Fronius PRIMO 3.0-1
Fronius GALVO 1.5-1
Fronius GALVO 2.0-1
Fronius GALVO 2.5-1
Fronius GALVO 3.0-1
Fronius SYMO 3.0-3-S
Fronius SYMO 3.0-3-M
Fronius SYMO Hybrid 3.0-3-S
3-fazowo
3kW < Pn ≤ 40kW
Fronius SYMO 3.0-3-S
Fronius SYMO 3.7-3-S
Fronius SYMO 4.5-3-S
Fronius SYMO 3.0-3-M
Fronius SYMO 3.7-3-M
Fronius SYMO 4.5-3-M
Fronius SYMO 5.0-3-M
Fronius SYMO 6.0-3-M
Fronius SYMO 7.0-3-M
Fronius SYMO 8.2-3-M
Fronius SYMO 10.0-3-M
Fronius SYMO 12.5-3-M
Fronius SYMO 15.0-3-M
Fronius SYMO 17.5-3-M
Fronius SYMO 20.0-3-M
Fronius ECO 25.0-3-S
Fronius ECO 27.0-3-S
Fronius SYMO Hybrid 3.0-3-S
Fronius SYMO Hybrid 4.0-3-S
Fronius SYMO Hybrid 5.0-3-S

 

Zalecane jest stosowanie falowników w wersji ‘Wlan/Web’ (z preinstalowaną kartą Datamanager 2.0). Wszystkie falowniki w wersji ‘light’ mogą być w razie potrzeby doposażone w tę kartę już na miejscu instalacji u Klienta.

 

Karty aktualizacji opublikowane na stronach Operatorów Systemów Dystrybucyjnych:

  1. Karta aktualizacji ENEA Operator Sp. z o.o.
  2. Karta aktualizacji innogy Stoen Operator Sp. z o.o.
  3. Karta aktualizacji ENERGA-OPERATOR S.A.
  4. Karta aktualizacji PGE Dystrybucja S.A.
  5. Karta aktualizacji TAURON Dystrybucja S.A.

W przypadku jakichkolwiek zapytań prosimy o bezpośredni kontakt! Jeżeli będą pojawiać się nowe informacje w tej sprawie, będziemy informować Państwa na bieżąco.

Z poważaniem,
Maciej Piliński

Sales Manager
Solar Energy
Fronius Polska Sp. z o.o.